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Abstract 
In the classic multi-stage Stern–Gerlach experiment conducted by Frisch and Segrè, the Majorana 
(Landau–Zener) and Rabi formulae diverge afar from the experimental observation while the 
physical mechanism for electron-spin collapse remains unidentified. Here, introducing the 
physical co-quantum concept provides a plausible physical mechanism and predicts the 
experimental observation in absolute units without fitting (i.e., no parameters adjusted) with a p-
value less than one per million, which is the probability that the co-quantum theory happens to 
match the experimental observation purely by chance. Further, the co-quantum concept is 
corroborated by statistically reproducing exactly the wave function, density operator, and 
uncertainty relation for electron spin in Stern–Gerlach experiments. 
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1. Introduction 
Performed three years before the successful development of quantum mechanics, the 1922 Stern–
Gerlach experiment on silver atoms [1] quickly proved fundamental to quantum physics [2, 3]. 
The benchmark experiment led to the quantization of all angular momenta, discovery of electron 
spin, study of the measurement problem and superposition, direct investigation of the ground-state 
properties of atoms without electronic excitation, and selection of fully spin-polarized atoms [2]. 
Within a few weeks, Einstein and Ehrenfest concluded that spin collapse cannot be interpreted by 
radiation, which would take 100 years [4]. Recently, Wennerström and Westlund numerically 
simulated that relaxation of 1 µs qualitatively reproduced the double branched collapse pattern [5], 
and Norsen interpreted spin collapse using the de Broglie–Bohm pilot-wave theory [6]. The 
significance of the Stern–Gerlach experiment and relevant works are detailed in a 2016 inspiring 
review [2], concluding that “The physical mechanism responsible for the alignment of the silver 
atoms remained and remains a mystery” and quoting Feynman, “… instead of trying to give you a 
theoretical explanation, we will just say that you are stuck with the result of this experiment … ” 
[7]. 

Immediately, Heisenberg and Einstein proposed multi-stage Stern–Gerlach experiments to 
explore deeper mysteries of directional quantization [2]. Ten years later, Phipps and Stern reported 
the first effort [8], which was unfortunately discontinued owing to Phipps’ involuntary return to 
the US [2]. A year later, Frisch and Segrè modified the same apparatus by adopting Einstein’s 
suggestion on the use of a single wire instead of three electromagnets to rotate spin; they also 
improved magnetic shielding, slit filtering, and signal detection [2]. Despite the use of three layers 
of magnetic shielding for the middle stage (i.e., the inner rotation chamber), the remnant or residual 
fringe magnetic field was still 0.42 × 10−4 T (or 0.42 G). Rather than fight the fringe magnetic 
field further, they took advantage of it. The magnetic field from the wire in the middle stage cancels 
the remnant field to produce a magnetic null point, around which the field is approximated as a 
magnetic quadrupole; consequently, they successfully observed nonadiabatic spin flip [9]. Note 
that only the magnetic field near a null point is effective for nonadiabatic spin flip; thus, the field 
far from a null point does not significantly affect transition, and its detailed distribution is of little 
import. Frisch and Segrè varied the wire current, which is the only independent variable controlled 
here, over nearly two orders of magnitude approximately uniformly on a logarithmic scale to 
observe the peak fraction of spin flip and its entire range. They started and ended with sufficiently 
extreme currents that yielded negligible fractions of spin flip. Having reached a nearly zero fraction 
of spin flip at the highest current might be the reason that they ceased increasing the current further. 
Further, the calculation of the fraction automatically obviates the requirement for absolute 
calibration. This data set suggests they designed and executed the experiment with great care.  

Frisch and Segrè found that their observation [9] unexpectedly diverges from the Majorana 
formula (Fig. 1) [10, 11], which was stimulated by the experiment of Frisch and Segrè. The 
Majorana formula is a variant of the Landau–Zener formula, which is better-known despite the 
concurrent publications of all four related papers in the same year [12-14]. For a historical 
comparison of the four papers, please refer to Ref. [15]. Fermi suggested that interaction among 
atoms could be responsible for the divergence, but atoms were sufficiently sparse to be treated 
independently [9]. Rabi acknowledged “Professor E. Segrè for discussions on the details of the 
Frisch and Segrè experiment”, recognized the role of the nuclear magnetic moment, and revised 
the Majorana formula through hyperfine coupling [16]. Rabi’s revised formula, however, did not 
overcome the divergence (Fig. 1).  
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Multi-stage Stern–Gerlach (Frisch–Segrè) experiments are much more difficult to model 
than single-stage ones. Multiple stages produce far more nuanced observation because the middle 
stage can vary the electron spin orientation over a wide range after polarization by the first stage. 
A correct single-stage theory must pass the more stringent test of the multi-stage experiment. This 
spin-flip divergence in multi-stage Stern–Gerlach experiments remains unresolved [2]. One may 
only speculate why the 1933 discrepancy [9] has not been resolved. The seminal paper has not 
been republished in English, which might have limited its visibility. 

 
Fig. 1. Illustration of the divergence of the Majorana and Rabi formulae from the Frisch–Segrè 
experimental observation and the convergence of the co-quantum dynamic formula. Details are to 
be discussed. 

Here, a theory, called co-quantum dynamics (CQD) [17], is presented to both provide a 
collapse mechanism and predict the Frisch–Segrè experimental observation (Fig. 1) [9]. CQD is 
theoretically verified by reproducing, for electron spin in Stern–Gerlach experiments, the quantum 
mechanical wave function, density operator, and uncertainty relation as well as, in a recent 
publication [17], the Schrödinger—Pauli equation. In Methods, CQD is presented in three 
subsections, including the equations of motion, branching condition, and pre-collapse state 
function and prediction expression. In Results, Stern–Gerlach experiments in both single and 
multiple stages are modeled. For flow continuity, lengthy interpretations are postponed to 
Discussion, and detailed mathematical derivations are presented in Appendices (Supplement 
Material). Deferred to the last appendices are the CQD derivations of the uncertainty relation, the 
entangled wave function, and  the observation in a two-stage Stern–Gerlach  apparatus with a 
varying angle between the quantization axes. 

The following table (Table 1) compares briefly CQD with the representative existing 
quantum mechanical theories for collapse [18], e.g., the Ghirardi–Rimini–Weber model [19] and 
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continuous spontaneous localization model [20, 21]. CQD, based on the classical Bloch equation 
(or its Landau–Lifshitz–Gilbert derivative) and the two postulates, provides a physical instead of 
phenomenological mechanism for electron spin collapse. In the presence of an external magnetic 
field, the nuclear magnetic moment is responsible for the collapse of electron spin. The absence of 
fitting with any adjustable parameters and the high coefficient of determination 𝑅𝑅2  (or high 
correlation coefficient) led to the small p-value (𝑝𝑝 < 8 × 10−7) [22, 23]. In general, fitting with 
more and more adjustable parameters, one may improve 𝑅𝑅2  towards unity. While 𝑅𝑅2  is not 
penalized for the number of adjustable parameters used relative to the number of experimental data 
points available, the p-value is. Therefore, one may achieve an arbitrarily high 𝑅𝑅2 at the expense 
of the p-value. The p-value is an objective measure of agreement between a theory and the 
experiment. As a standard definition, the p-value quantifies the probability of observing results at 
least as extreme as the ones observed given that the null hypothesis is true. For stringent 
discoveries, high-energy physics, for example, requires p ≤3 × 10−7, which corresponds to 5σ 
[24]. The LIGO observation of gravitational waves applied a similar criterion [25]. The agreement 
of CQD with the experiment is at a similar level as well. While the LIGO observed a chirp signal, 
which is common in various forms in nature, the Frisch–Segrè experimental data follow an 
uncommon shape, which is even more unlikely to be matched by random chance. Therefore, the 
value of 𝑝𝑝 < 8 × 10−7 claims a statistical significance that cannot be ignored objectively. The 
probability that CQD happens to match the experimental observation so well purely by chance is 
less than one in a million. It is even less likely for an incorrect theory to match an incorrect 
experiment by chance if one doubts the Frisch–Segrè experimental data. Because the Majorana or 
Rabi formula, if correct, follows a monotonic trend, it would be difficult to fathom that some 
experimental imperfections caused the fraction of spin flip to increase at low currents and to 
decrease at high currents. Matching a theory with the experiment so well without using any 
adjustable parameters inspires conviction. Further, CQD is corroborated by statistically 
reproducing exactly the wave function, density operator, and uncertainty relation for electron spin. 
This corroboration may be considered supporting evidence because an incorrect theory would 
highly unlikely be able to reproduce so many fundamental aspects of quantum mechanics.  

Table 1. Comparison between representative existing quantum mechanical theories and CQD. 

 Existing theories Co-quantum dynamics 
Domain Quantum mechanical Semiclassical 
Starting equation Schrödinger equation Bloch equation (classical) 

[17] 
Cause for collapse Phenomenological: no 

physical object identified [18] 
Physical: nuclear magnetic 
moment identified 

Angular distribution of 
nuclear magnetic moment 

Discrete (quantized); isotropic Continuous; isotropic or 
anisotropic 

Collapse rate Preset as a constant 
dimensional rate (1/s) 

Scaled dynamically via a 
dimensionless constant (Eq. 
9) 

Measurement uncertainty Inequality Equality (Eq. 186), yielding 
the inequality (Eq. 187) 

Quantitative prediction of 
multi-stage Stern–Gerlach 
(Frisch–Segrè) experiment 

Not found yet in the literature 
except the Majorana or Rabi 
formulae 

Accurately (𝑝𝑝 < 8 × 10−7) 
without scaling or fitting, no 
parameters are adjusted 
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2. Methods 
CQD equations of motion 

In classical electrodynamics, the motion of a magnetic dipole moment, �⃗�𝜇, is described by the Bloch 
equation, 

 𝑑𝑑𝜇𝜇�
𝑑𝑑𝑑𝑑

= 𝛾𝛾�̂�𝜇 × 𝐵𝐵�⃗ , (1) 

where caret denotes a unit vector, 𝑡𝑡  time, 𝛾𝛾  the gyromagnetic ratio, and 𝐵𝐵�⃗  the magnetic flux 
density. Majorana stated that both the classical and the quantum-mechanical treatments on spin 
flip require integration of the same differential equations [10, 11]. It is known that the Schrödinger 
or von Neumann equation for a unitary two-level system can be converted to the Bloch equation 
or its analog [7, 26, 27].  

We now extend the Bloch equation to the Landau–Lifshitz–Gilbert equation [28], 

 𝑑𝑑𝜇𝜇�
𝑑𝑑𝑑𝑑

= 𝛾𝛾�̂�𝜇 × 𝐵𝐵�⃗ − 𝑘𝑘𝑖𝑖�̂�𝜇 × 𝑑𝑑𝜇𝜇�
𝑑𝑑𝑑𝑑

, (2) 

where the dimensionless  𝑘𝑘𝑖𝑖  is called the induction factor here. Although this equation was 
originally intended for condensed matter, the underlying physical mechanism for the added term 
is compatible with CQD (see Paragraph 1 in Discussion). In fact, the author had developed CQD 
before realizing its connection with the Landau–Lifshitz–Gilbert equation. If  𝑘𝑘𝑖𝑖 = 0, the Bloch 
equation is recovered.  

Henceforth, subscripted 𝑒𝑒 and 𝑛𝑛 denote electron and nucleus, respectively. The default 
atom, to match the Frisch–Segrè experiment [9], is potassium (39K). The scope of the manuscript 
is limited to potassium in the Stern–Gerlach or Frisch–Segrè experiment. 

The torque-averaged magnetic flux densities from �⃗�𝜇𝑛𝑛  and �⃗�𝜇𝑒𝑒  applied on each other are 
respectively (Appendix 1) 

 𝐵𝐵�⃗ 𝑛𝑛 = 5𝜇𝜇0
16π𝑅𝑅3

�⃗�𝜇𝑛𝑛 (3) 

and 

 𝐵𝐵�⃗ 𝑒𝑒 = 5𝜇𝜇0
16π𝑅𝑅3

�⃗�𝜇𝑒𝑒, (4) 

where 𝜇𝜇0 is the vacuum permeability (4𝜋𝜋 × 10−7 H/m) and 𝑅𝑅 is the van der Waals atomic radius 
(2.75 × 10−10 m) [29]. Chiefly because the nucleus is more massive, 𝜇𝜇𝑒𝑒 (9.285 × 10−24 J/T) ≫ 
𝜇𝜇𝑛𝑛 (1.977 × 10−27 J/T); thus, 𝐵𝐵𝑒𝑒  (558.1 × 10−4 T) ≫ 𝐵𝐵𝑛𝑛 (0.119 × 10−4 T), where 10−4 T = 1 
Gauss. 

CQD refers to �⃗�𝜇𝑒𝑒 as the principal quantum and �⃗�𝜇𝑛𝑛 in the same atom as the co-quantum. 
Postulate 1 states that induction between the electron and the nucleus tends to increase |𝜃𝜃𝑒𝑒 − 𝜃𝜃𝑛𝑛|, 
where 𝜃𝜃 denotes the polar angle relative to the quantization axis (see Paragraph 1 in Discussion). 
We (1) apply the Landau–Lifshitz–Gilbert equation to both �̂�𝜇𝑒𝑒 and �̂�𝜇𝑛𝑛, (2) express the unit vectors 
in spherical coordinates, and (3) revise the signs of the induction terms to implement the above 
postulate, leading to the following CQD equations of motion (Appendix 2): 

 �̇�𝜃𝑒𝑒 = −𝛾𝛾𝑒𝑒�𝐵𝐵𝑦𝑦 cos𝜙𝜙𝑒𝑒 + 𝐵𝐵𝑛𝑛 sin𝜃𝜃𝑛𝑛 sin(𝜙𝜙𝑛𝑛 − 𝜙𝜙𝑒𝑒)� − sgn(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑒𝑒)𝑘𝑘𝑖𝑖��̇�𝜙𝑒𝑒� sin 𝜃𝜃𝑒𝑒, (5) 
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 �̇�𝜃𝑛𝑛 = −𝛾𝛾𝑛𝑛�𝐵𝐵𝑦𝑦 cos𝜙𝜙𝑛𝑛 + 𝐵𝐵𝑒𝑒 sin𝜃𝜃𝑒𝑒 sin(𝜙𝜙𝑒𝑒 − 𝜙𝜙𝑛𝑛)� − sgn(𝜃𝜃𝑒𝑒 − 𝜃𝜃𝑛𝑛)𝑘𝑘𝑖𝑖��̇�𝜙𝑛𝑛� sin𝜃𝜃𝑛𝑛, (6) 

 �̇�𝜙𝑒𝑒 = −𝛾𝛾𝑒𝑒�𝐵𝐵𝑧𝑧 + 𝐵𝐵𝑛𝑛 cos𝜃𝜃𝑛𝑛 − cot 𝜃𝜃𝑒𝑒 �𝐵𝐵𝑦𝑦 sin𝜙𝜙𝑒𝑒 + 𝐵𝐵𝑛𝑛 sin𝜃𝜃𝑛𝑛 cos(𝜙𝜙𝑛𝑛 − 𝜙𝜙𝑒𝑒)�� − sgn�̇�𝜙𝑒𝑒𝑘𝑘𝑖𝑖 ��̇�𝜃𝑒𝑒�
sin𝜃𝜃𝑒𝑒

,  (7) 

and 

 �̇�𝜙𝑛𝑛 = −𝛾𝛾𝑛𝑛�𝐵𝐵𝑧𝑧 + 𝐵𝐵𝑒𝑒 cos 𝜃𝜃𝑒𝑒 − cot 𝜃𝜃𝑛𝑛 �𝐵𝐵𝑦𝑦 sin𝜙𝜙𝑛𝑛 + 𝐵𝐵𝑒𝑒 sin𝜃𝜃𝑒𝑒 cos(𝜙𝜙𝑒𝑒 − 𝜙𝜙𝑛𝑛)�� − sgn�̇�𝜙𝑛𝑛𝑘𝑘𝑖𝑖��̇�𝜃𝑛𝑛�
sin𝜃𝜃𝑛𝑛

. (8) 

Here, 𝜙𝜙 denotes the azimuthal angle; 𝐵𝐵𝑦𝑦 and 𝐵𝐵𝑧𝑧 represent, respectively, the 𝑦𝑦 (axis of the atomic 
beam) and 𝑧𝑧 components of the external magnetic flux densities; 𝐵𝐵𝑥𝑥 is neglected for brevity; sgn 
denotes the sign function. When 𝜃𝜃𝑒𝑒 = 0 or 𝜋𝜋, Eq. 7 is replaced with �̇�𝜙𝑒𝑒 = 0; when 𝜃𝜃𝑛𝑛 = 0 or 𝜋𝜋, 
Eq. 8 is replaced with �̇�𝜙𝑛𝑛 = 0 . Primarily because the nucleus is more massive again, 𝛾𝛾𝑒𝑒 
(−1.761 × 1011  rad Hz/T) in absolute value is four orders of magnitude greater than 𝛾𝛾𝑛𝑛 
(1.250 × 107 rad Hz/T). If 𝐵𝐵𝑛𝑛 = 0 and 𝑘𝑘𝑖𝑖 = 0, Eq. 5 and 7 reduce to the equations shown by 
Majorana [10, 11].  

CQD branching condition 

Postulate 2 states that the polar angle of the co-quantum, 𝜃𝜃𝑛𝑛, varies negligibly (≪ 𝜋𝜋) during flight 
in typical Stern–Gerlach experiments, where the duration is too short for the co-quantum to 
collapse (see Paragraph 2 in Discussion). The external main field, 𝐵𝐵0, along the 𝑧𝑧 axis is usually 
much stronger than 𝐵𝐵𝑒𝑒 and 𝐵𝐵𝑛𝑛. While the fast motion of �̂�𝜇𝑒𝑒 is precession about the main field, the 
secondary motion is collapse due to the induction term, which yields the following trend from Eq. 
5: 

 tan 𝜃𝜃𝑒𝑒(𝑑𝑑)
2

 = tan 𝜃𝜃𝑒𝑒(0)
2

exp[−sgn(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑒𝑒)𝑘𝑘𝑖𝑖|Δ𝜙𝜙𝑒𝑒(𝑡𝑡)|]. (9) 

Here, Δ𝜙𝜙𝑒𝑒 denotes the traversed azimuthal angle (i.e., unwrapped phase). If the Larmor frequency 
of the electron magnetic moment 𝜔𝜔𝑒𝑒 is constant, we simply have Δ𝜙𝜙𝑒𝑒 = 𝜔𝜔𝑒𝑒𝑡𝑡. As time evolves, 𝜃𝜃𝑒𝑒 
approaches either 0 or 𝜋𝜋 according to the following branching condition: 

 sgn(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑒𝑒) = �
1 if 𝜃𝜃𝑛𝑛 > 𝜃𝜃𝑒𝑒 ,
0 if 𝜃𝜃𝑛𝑛 = 𝜃𝜃𝑒𝑒 ,
−1 else.

  (10) 

Therefore, �̂�𝜇𝑒𝑒  collapses to either +𝑧𝑧 or −𝑧𝑧 while precessing about 𝐵𝐵0, depending on the polar 
angle of the co-quantum 𝜃𝜃𝑛𝑛 relative to 𝜃𝜃𝑒𝑒 (Fig. 2). 

 
Fig. 2. Examples of collapse directions determined by the branching condition in Stern–Gerlach 
experiments. 𝐵𝐵0: external main field; e: electron magnetic moment (principal quantum), �̂�𝜇𝑒𝑒; n: 
nuclear magnetic moment (co-quantum), �̂�𝜇𝑛𝑛 ; Short arrows: collapse directions. While �̂�𝜇𝑒𝑒 
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precesses about 𝐵𝐵0 right-handedly at its Larmor frequency (𝜔𝜔𝑒𝑒 = −𝛾𝛾𝑒𝑒𝐵𝐵0), �̂�𝜇𝑛𝑛 does left-handedly 
at the Larmor frequency (𝜔𝜔𝑛𝑛 = −𝛾𝛾𝑛𝑛𝐵𝐵0); note that |𝜔𝜔𝑒𝑒 𝜔𝜔𝑛𝑛⁄ | > 104. For the same given �̂�𝜇𝑒𝑒, the 
collapse direction, down (left panel) or up (right panel), depends on �̂�𝜇𝑛𝑛 according to the branching 
condition (Eq. 10). It takes on the order of 𝑁𝑁𝑐𝑐 (estimated to be on the order of ~220 in Results) 
Larmor cycles to collapse. In typical Stern–Gerlach experiments, it is assumed that �̂�𝜇𝑛𝑛 does not 
collapse, i.e., 𝜃𝜃𝑛𝑛 is approximately constant. 

The number of precession cycles required to vary tan(𝜃𝜃𝑒𝑒 2⁄ ) by a factor of 𝑒𝑒 is given by 

 𝑁𝑁𝑐𝑐 = 1
2𝜋𝜋𝑘𝑘𝑖𝑖

 (11) 

regardless of the strength of the external magnetic field. For a constant Larmor frequency, 𝜔𝜔𝑒𝑒, the 
collapse time constant is 

 𝑇𝑇𝑐𝑐 = 𝑁𝑁𝑐𝑐
2𝜋𝜋

|𝜔𝜔𝑒𝑒| = 1
𝑘𝑘𝑖𝑖|𝜔𝜔𝑒𝑒|. (12) 

CQD pre-collapse state function and CQD prediction expression 

The CQD pre-collapse state function is denoted by |�̂�𝜇𝑒𝑒©�̂�𝜇𝑛𝑛⟩ , where the co-quantum, �̂�𝜇𝑛𝑛 , is 
prefixed with © for clarity. |�̂�𝜇𝑒𝑒©�̂�𝜇𝑛𝑛⟩ represents �̂�𝜇𝑒𝑒 accompanied with �̂�𝜇𝑛𝑛, both governed by the 
CQD equations of motion.  

The CQD prediction expression for Stern–Gerlach experiments is written as 

 |�̂�𝜇𝑒𝑒©�̂�𝜇𝑛𝑛⟩ = 𝐶𝐶+(�̂�𝜇𝑒𝑒 , �̂�𝜇𝑛𝑛)|+𝑧𝑧⟩ + 𝐶𝐶−(�̂�𝜇𝑒𝑒 , �̂�𝜇𝑛𝑛) exp(𝑖𝑖𝜙𝜙𝑒𝑒) |−𝑧𝑧⟩. (13) 

The equal sign functions as a right arrow (→) because the right side predicts the measurement 
outcome. A given �̂�𝜇𝑒𝑒 collapses to either +�̂�𝑧 or −�̂�𝑧 according to the branching condition (Eq. 10). 
The two real and positive 𝐶𝐶 coefficients take on mutually exclusive binary values while exp(𝑖𝑖𝜙𝜙𝑒𝑒) 
captures the phase information. If 𝜃𝜃𝑛𝑛 > 𝜃𝜃𝑒𝑒 , then 𝐶𝐶+ = 1  and 𝐶𝐶− = 0 ; if 𝜃𝜃𝑛𝑛 < 𝜃𝜃𝑒𝑒 , 𝐶𝐶+ = 0  and 
𝐶𝐶− = 1. In either case, 𝐶𝐶+ ⋅ 𝐶𝐶− = 0 and 𝐶𝐶+ + 𝐶𝐶− = 1.  

 

3. Results 
Single-stage Stern–Gerlach experiment 

To describe the angular distribution of �̂�𝜇𝑒𝑒 or �̂�𝜇𝑛𝑛 in an ensemble of atoms, we define the angular 
probability density function, 𝑝𝑝(𝜃𝜃,𝜙𝜙), as the probability of �̂�𝜇 pointing to the vicinity of (𝜃𝜃,𝜙𝜙) per 
unit infinitesimal solid angle, with the following normalization: 

 ∫ ∫ 𝑝𝑝(𝜃𝜃,𝜙𝜙) sin𝜃𝜃 𝑑𝑑𝜙𝜙2𝜋𝜋
0 𝑑𝑑𝜃𝜃𝜋𝜋

0 = 1. (14) 

If the azimuthal distribution is isotropic, the integral reduces to ∫ 𝑝𝑝(𝜃𝜃,𝜙𝜙)2𝜋𝜋 sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝜋𝜋
0 = 1.  

The angular distribution of �̂�𝜇𝑛𝑛 for atoms immediately out of the oven is presumed to be 
isotropic as given by (Fig. 3, Inset a, dashed circle) 

 𝑝𝑝𝑛𝑛0(𝜃𝜃𝑛𝑛,𝜙𝜙𝑛𝑛) = 1
4𝜋𝜋

. (15) 
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In a single-stage Stern–Gerlach experiment (Fig. 3, SG1), the probabilities of collapse for 
a given 𝜃𝜃𝑒𝑒 are related to the binary coefficients through ensemble averaging of the pre-averaging 
density operator defined in Appendix 3 (Eq. 70) over 𝑝𝑝𝑛𝑛0. The outcome is summarized as 

 〈𝐶𝐶+〉𝑛𝑛2 = ∫ 𝑝𝑝𝑛𝑛02𝜋𝜋 sin𝜃𝜃𝑛𝑛 𝑑𝑑𝜃𝜃𝑛𝑛
𝜋𝜋
𝜃𝜃𝑒𝑒

= cos2 𝜃𝜃𝑒𝑒
2

 (16) 

and 

 〈𝐶𝐶−〉𝑛𝑛2 = ∫ 𝑝𝑝𝑛𝑛02𝜋𝜋 sin𝜃𝜃𝑛𝑛 𝑑𝑑𝜃𝜃𝑛𝑛
𝜃𝜃𝑒𝑒
0 = sin2 𝜃𝜃𝑒𝑒

2
. (17) 

The angle brackets, with the subscripts denoting nuclear, represent ensemble averaging with the 
integration limits determined by the branching condition (Eq. 10). The two probabilities are 
proportional to the solid angles formed by the down and up sides of the cone shaped by the initial 
Bloch vector 15 precessing over one cycle. Each solid angle determines the probability of having 
the co-quantum on the corresponding side of the cone. 

  
Fig. 3. Multi-stage Stern–Gerlach (SG) experiment conducted by Frisch and Segrè [9]. The atomic 
beam from the oven is sent through (1) Stage SG1 to collapse �̂�𝜇𝑒𝑒  (principal quantum), (2) the 
magnetically shielded inner rotation (IR) chamber to rotate �̂�𝜇𝑒𝑒, (3) a slit (not shown) to select a 
branch, and (4) Stage SG2 to measure the fraction of spin flip. The red solid line and filled circle 
represent the current-carrying wire, and the gray sphere in cutaway view represents magnetic 
shielding. Inset (a) Angular distributions of �̂�𝜇𝑛𝑛 (co-quanta) before and after Stage SG1. Inset (b) 
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Magnetic field lines within the IR chamber; NP: null point, formed by the cancelation of the 
magnetic field from the wire by the vertical remnant (residual) fringe magnetic field. Here, the 
vertical distance of the atomic beam from the center of the wire, 𝑧𝑧𝑎𝑎 = 1.05 × 10−4 m; the most 
likely speed of atoms,  𝑣𝑣 =  800 m s–1; the uniformly distributed remnant (residual) fringe 
magnetic flux density, 𝐵𝐵𝑟𝑟 = 0.42 × 10−4 T, which is parallel with the +𝑧𝑧 axis (up in the figure); 
and the current carried by the wire, 𝐼𝐼, points along the −𝑥𝑥 axis (into the screen). 

From Eq. 16 and 17, the pre-collapse state function (Eq. 13) averages to the following 
familiar quantum mechanical wave function for a pure state (Appendix 3): 

 |�̂�𝜇𝑒𝑒⟩ = cos 𝜃𝜃𝑒𝑒
2

|+𝑧𝑧⟩ + sin 𝜃𝜃𝑒𝑒
2

exp(𝑖𝑖𝜙𝜙𝑒𝑒) |−𝑧𝑧⟩. (18) 

If �̂�𝜇𝑒𝑒 is also isotropically distributed as 

  𝑝𝑝𝑒𝑒0(𝜃𝜃𝑒𝑒,𝜙𝜙𝑒𝑒) = 1
4𝜋𝜋

, (19) 

the probabilities of collapse are predicted by averaging Eq. 16 and 17 over 𝑝𝑝𝑒𝑒0 (Appendix 3): 

 〈𝐶𝐶+〉𝑛𝑛,𝑒𝑒
2 = ∫ cos2 𝜃𝜃𝑒𝑒

2
𝑝𝑝𝑒𝑒02𝜋𝜋 sin𝜃𝜃𝑒𝑒 𝑑𝑑𝜃𝜃𝑒𝑒

𝜋𝜋
0 = 1

2
 (20) 

and 

 〈𝐶𝐶−〉𝑛𝑛,𝑒𝑒
2 = ∫ sin2 𝜃𝜃𝑒𝑒

2
𝑝𝑝𝑒𝑒02𝜋𝜋 sin𝜃𝜃𝑒𝑒 𝑑𝑑𝜃𝜃𝑒𝑒

𝜋𝜋
0 = 1

2
. (21) 

The 𝑒𝑒  subscripts denote electron. The outcomes agree with the familiar quantum mechanical 
prediction for a maximally mixed state of atoms immediately out of the oven, represented by a 
density operator (Eq. 87, Appendix 3).  

Multi-stage Stern–Gerlach experiment 

In the multi-stage Stern–Gerlach experiment conducted by Frisch and Segrè (Fig. 3) [9], Stage 
SG1 collapses �̂�𝜇𝑒𝑒 into two branches. The inner rotation (IR) chamber rotates �̂�𝜇𝑒𝑒 by an angle of 𝛼𝛼𝑟𝑟 
using the magnetic field shown in Inset b. A slit (not shown) selects one branch: the +𝑧𝑧 branch is 
chosen here. Stage SG2 collapses �̂�𝜇𝑒𝑒 and measures the fraction of spin flip. Therefore, Stage SG1 
serves as a polarizer, the IR chamber a rotator, and Stage SG2 an analyzer. 

The probability of spin flip has been predicted [10, 11] by quantum mechanics as (see Eq. 
17, set 𝜃𝜃𝑒𝑒 = 𝛼𝛼𝑟𝑟) 

 𝑊𝑊qm = ⟨−𝑧𝑧|𝛼𝛼𝑟𝑟⟩2 = sin2 𝛼𝛼𝑟𝑟
2

, (22) 

which leads to the following Majorana formula (Appendix 4, Eq. 117) [10, 11]: 

 𝑊𝑊𝑚𝑚 = exp �−𝜋𝜋𝑧𝑧𝑎𝑎
2𝑣𝑣

|𝛾𝛾𝑒𝑒|𝐵𝐵𝑦𝑦�. (23) 

Here, 𝑧𝑧𝑎𝑎 is the vertical distance of the atomic beam from the center of the wire, and 𝑣𝑣 is the most 
likely speed of the atoms. The spin flip is because 𝐵𝐵𝑧𝑧 vanishes and reverses its sign near the null 
point (Fig. 3, Inset b). Because 𝐵𝐵𝑦𝑦 is inversely proportional to the current carried by the wire, 𝐼𝐼 
(Eq. 92 and 94 in Appendix 4), the Majorana formula predicts a probability of spin flip approaching 
100% with increasing currents (Fig. 4, Curve m), i.e., as 𝐵𝐵𝑦𝑦 → 0, 𝑊𝑊𝑚𝑚 → 1; yet, the experimental 
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outcome decreases to nearly zero after peaking at 31% (Fig. 4, circles) [9]. Consequently, 𝑊𝑊𝑚𝑚 
yields a negative coefficient of determination (𝑅𝑅2). Using the dimensionless adiabaticity parameter 
𝑘𝑘𝑚𝑚  (Eq. 103 in Appendix 4), one can express the above equation concisely as 𝑊𝑊𝑚𝑚 =
exp(−𝜋𝜋𝑘𝑘𝑚𝑚 2⁄ ) (Eq. 116). Rabi revised the Majorana formula to 𝑊𝑊𝑚𝑚

1 4⁄ 4⁄  [16], which, however, 
overestimates the starting points, underestimates the peak, and continues to diverge thereafter; as 
a result, the 𝑅𝑅2 remains negative (Fig. 1).  

 
Fig. 4. Fraction of spin flip versus wire current. The down arrow points to the current where 𝐵𝐵𝑦𝑦′ =
𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉 or 𝑘𝑘0 = 𝑘𝑘1 to separate the low- and high-current regions. Curves m and 1–4 represent 
𝑊𝑊𝑚𝑚 and 𝑊𝑊1 −𝑊𝑊4, respectively. While 𝑊𝑊𝑚𝑚 diverges from the experiment with a negative 𝑅𝑅2, 𝑊𝑊3 
matches the low-current experimental observation in absolute units without fitting with 𝑅𝑅2 =
0.9495 ; further, 𝑊𝑊4  matches the entire observation with improved 𝑅𝑅2 = 0.9787  and 𝑝𝑝 <
8 × 10−7. No adjustable or free parameters are used. 

In CQD, Stage SG1 varies 𝜃𝜃𝑛𝑛 negligibly according to Postulate 2. However, polarization 
selection by the slit reshapes the co-quantum angular distribution from the original isotropic 𝑝𝑝𝑛𝑛0 
(Eq. 15) to 

 𝑝𝑝𝑛𝑛1(𝜃𝜃𝑛𝑛,𝜙𝜙𝑛𝑛) = 𝑝𝑝𝑛𝑛0(𝜃𝜃𝑛𝑛,𝜙𝜙𝑛𝑛) ⋅ 2∫ 𝑝𝑝𝑒𝑒02𝜋𝜋 sin𝜃𝜃𝑒𝑒 𝑑𝑑𝜃𝜃𝑒𝑒
𝜃𝜃𝑛𝑛
0 = 1−cos(𝜃𝜃𝑛𝑛)

4𝜋𝜋
. (24) 

Here, the pre-factor 2 compensates for the overall slit rejection of the opposite polarization (Eq. 
20), 𝑝𝑝𝑒𝑒0 is given by Eq. 19, and the integration limits are based on the branching condition (Eq. 
10). Because atoms with smaller 𝜃𝜃𝑛𝑛  are deflected to the blocked −𝑧𝑧  branch with greater 
probabilities, 𝑝𝑝𝑛𝑛1 forms a heart shape (Fig. 3, Inset a, solid line; Paragraph 3 in Discussion).  
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The heart shape is assumed to be approximately maintained throughout the inner rotation 
chamber owing to the extension of Postulate 2 (see Paragraph 2 in Discussion). The co-quanta 
engender the following four effects on the principal quanta. 

First, the probability of spin flip is derived by ensemble averaging over 𝑝𝑝𝑛𝑛1 instead of 𝑝𝑝𝑛𝑛0 
(Eq. 89 with 𝜃𝜃𝑒𝑒 = 𝛼𝛼𝑟𝑟 in Appendix 3): 

 𝑊𝑊cqd = ⟨−𝑧𝑧|𝛼𝛼𝑟𝑟⟩2 = ∫ 𝑝𝑝𝑛𝑛12𝜋𝜋 sin𝜃𝜃𝑛𝑛 𝑑𝑑𝜃𝜃𝑛𝑛
𝛼𝛼𝑟𝑟
0 = sin4 �𝛼𝛼𝑟𝑟

2
�, (25) 

which equals 𝑊𝑊qm
2  (Eq. 22). As shown by Curve 1 in Fig. 4, simply squaring 𝑊𝑊𝑚𝑚 (Eq. 23) already 

brings the solution much closer to the observation at low currents, but with an overcorrection near 
𝐼𝐼 = 0.03 A. This squaring effect evolves the probability of spin flip from 𝑊𝑊𝑚𝑚 to 

 𝑊𝑊1 = 𝑊𝑊𝑚𝑚
2 = exp �−𝜋𝜋𝑧𝑧𝑎𝑎

𝑣𝑣
|𝛾𝛾𝑒𝑒|𝐵𝐵𝑦𝑦�, (26) 

where 𝐵𝐵𝑦𝑦 is computed from the remnant (residual) fringe magnetic flux density, 𝐵𝐵𝑟𝑟, using Eq. 92 
and 94 in Appendix 4. Using the dimensionless adiabaticity parameter 𝑘𝑘𝑚𝑚  (Eq. 103), one can 
express the above equation concisely as 𝑊𝑊1 = exp(−𝜋𝜋𝑘𝑘𝑚𝑚) (see Eq. 154 in Appendix 5). 

Second, the 𝑧𝑧 component of 𝐵𝐵�⃗ 𝑛𝑛 (Eq. 3), represented by 𝐵𝐵𝑛𝑛 cos〈𝜃𝜃𝑛𝑛〉, offsets the upward 𝐵𝐵𝑟𝑟. 
We substitute 𝐵𝐵𝑟𝑟 + 𝐵𝐵𝑛𝑛 cos〈𝜃𝜃𝑛𝑛〉 (Eq. 119 in Appendix 5) for 𝐵𝐵𝑟𝑟 to update 𝐵𝐵𝑦𝑦 to 𝐵𝐵𝑦𝑦′  (Eq. 122). The 
heart shape (Eq. 24) yields 〈𝜃𝜃𝑛𝑛〉 = 5π 8⁄  (Eq. 118). The magnitude of 𝐵𝐵𝑛𝑛 cos〈𝜃𝜃𝑛𝑛〉 = −0.045 ×
10−4 T exceeds 10% of 𝐵𝐵𝑟𝑟 (0.42 × 10−4 T), producing an appreciable remnant-alteration effect. 
As shown by Curve 2 in Fig. 4, the corrected curve passes through the first two data circles and 
grazes the third one. If the co-quantum distribution were isotropic, 〈𝜃𝜃𝑛𝑛〉 would be π 2⁄ ; 𝐵𝐵𝑛𝑛 cos〈𝜃𝜃𝑛𝑛〉 
would vanish, so would the remnant-alteration effect. Effect 2 evolves 𝑊𝑊1 to (see Eq. 136) 

 𝑊𝑊2 = exp �−𝜋𝜋𝑧𝑧𝑎𝑎
𝑣𝑣

|𝛾𝛾𝑒𝑒|𝐵𝐵𝑦𝑦′ �, (27) 

where 𝐵𝐵𝑦𝑦′ , however, is computed using 𝐵𝐵𝑟𝑟 + 𝐵𝐵𝑛𝑛 cos〈𝜃𝜃𝑛𝑛〉 instead of 𝐵𝐵𝑟𝑟. Using the dimensionless 
adiabaticity parameters 𝑘𝑘0  (Eq. 125), one can express the above equation concisely as 𝑊𝑊2 =
exp(−𝜋𝜋𝑘𝑘0) (see Eq. 153). 

Third, the co-quanta saturate the rotation. As shown by Eq. 27, 𝑊𝑊2  increases with 
decreasing 𝐵𝐵𝑦𝑦′ . However, the weakness of 𝐵𝐵𝑦𝑦′  is spoiled by the transverse (𝑥𝑥𝑦𝑦) component of 𝐵𝐵�⃗ 𝑛𝑛, 
denoted by 𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉. Substitution of �𝐵𝐵𝑦𝑦′2 + (𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉)2 for 𝐵𝐵𝑦𝑦′  (see Eq. 141) evolves 𝑊𝑊2 to 

 𝑊𝑊3 = exp �−𝜋𝜋𝑧𝑧𝑎𝑎
𝑣𝑣

|𝛾𝛾𝑒𝑒|�𝐵𝐵𝑦𝑦′2 + (𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉)2�. (28) 

Using the dimensionless adiabaticity parameters 𝑘𝑘0 (Eq. 125) and 𝑘𝑘1 (Eq. 126), one can express 
the above equation concisely as 𝑊𝑊3 = exp �−𝜋𝜋�𝑘𝑘02 + 𝑘𝑘0𝑘𝑘1� (see Eq. 152). 

As shown by Curve 3 in Fig. 4, this rotation-saturation effect clamps the overshoot in Curve 
2. The clamped curve passes through the first four data circles. The current is divided into two 
regions at 0.067 A, where 𝐵𝐵𝑦𝑦′ = 𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉 = 0.11 × 10−4 T. At low currents before the fourth 
data point (𝐼𝐼 = 0.05 A and 𝐵𝐵𝑦𝑦′ = 0.15 × 10−4 T), 𝐵𝐵𝑦𝑦′  is greater than 𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉; at high currents, 
conversely, 𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉 becomes dominant and saturates the curve. If the co-quantum distribution 
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were isotropic, then 〈𝜃𝜃𝑛𝑛〉 = π 2⁄ ; consequently, both the squaring and remnant-alteration effects 
(effects 1 and 2) would vanish. In this case, the rotation-saturation effect (effect 3) alone could not 
bring the Majorana solution down sufficiently in the low-current region because as the current 
decreases 𝐵𝐵𝑦𝑦′  increasingly overpowers 𝐵𝐵𝑛𝑛 ; thus, the effect of the co-quanta would become 
negligible.  

Combining the three effects, CQD accurately predicts the low-current observation in 
absolute units without fitting (i.e., no parameters are adjusted). The coefficient of determination 
𝑅𝑅2 for the low-current regime reaches 0.9495 as computed using the natural logarithm of the 
fractions of flip to suppress the exponential dependence (Eq. 28). Therefore, effecting the three 
modifications to the Majorana formula has already shown evidence for the existence of both the 
co-quantum and the derived heart-shaped distribution. 

Fourth, in the high-current regime, the precession of 𝐵𝐵�⃗ 𝑛𝑛  generates substantial nuclear-
resonant rotation, due to precession resonance between 𝜇𝜇𝑒𝑒 and �⃗�𝜇𝑛𝑛 when their Larmor frequencies 
are matched (see Appendix 5 for details). This effect evolves 𝑊𝑊3 to (Eq. 167 in Appendix 5) 

 𝑊𝑊4 = 𝑊𝑊3 exp(−𝑐𝑐𝑟𝑟1𝐼𝐼3), (29) 

where the resonant-rotation coefficient, 𝑐𝑐𝑟𝑟1, is given by Eq. 163. The fraction of spin flip peaks 
near 𝐼𝐼 = 0.1 A, where 𝐵𝐵𝑦𝑦′ = 0.074 × 10−4 T, comparable to but less than 𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉 = 0.11 ×
10−4 T. As shown by Curve 4 in Fig. 4, this effect increases with the current and bends down 
Curve 3. At the maximum current (𝐼𝐼 = 0.5 A), 𝐵𝐵𝑦𝑦′ = 0.015 × 10−4 T, far less than 𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉; the 
fraction of spin flip decreases to nearly zero. Expression of the above equation based on 
dimensionless parameters is discussed below Eq. 150. Using the dimensionless adiabaticity 
parameters 𝑘𝑘0 (Eq. 125) and 𝑘𝑘1 (Eq. 126) as well as 𝑓𝑓𝑟𝑟1 (Eq. 146), one can express the above 
equation concisely as 𝑊𝑊4 = exp �−𝜋𝜋�𝑘𝑘02 + 𝑘𝑘0𝑘𝑘1 −

1
2

[𝜋𝜋𝑘𝑘1 ]2𝑓𝑓𝑟𝑟1�  (see Eq. 151), where 𝑓𝑓𝑟𝑟1 
denotes the fraction of the Larmor period of the nuclear magnetic moment precessed during the 
effective flight path-length for nuclear-resonant rotation. 

Combining all four effects, CQD accurately predicts the experimental observation in 
absolute units without fitting (Fig. 4, Curve 4) over the entire domain; 𝑅𝑅2 is computed to be 0.9787 
using the natural logarithm of the fractions of flip to suppress the exponential dependence (Eq. 29). 
Under the null hypothesis that the theoretical prediction is uncorrelated with the observation, we 
estimate the 𝑝𝑝-value to be < 8 × 10−7 (Function regress or corr, MATLAB, MathWorks) [22, 
23]. Such a small 𝑝𝑝-value further objectively confirms the existence of both the co-quantum and 
the derived heart-shaped distribution. In comparison, without taking the logarithm of the fractions 
of flip, 𝑅𝑅2 is computed to be 0.9621. 

Thus far, we have set the induction factor 𝑘𝑘𝑖𝑖 = 0 for the flight in the inner rotation chamber, 
owing to the low field (Appendix 5). Including 𝑘𝑘𝑖𝑖 yields the following combined probability of 
spin flip (Appendix 5, Eq. 160): 

 𝑊𝑊cqd = exp�−�(𝑐𝑐𝑟𝑟0 𝐼𝐼⁄ )2 + 𝑐𝑐𝑟𝑟𝑟𝑟2 − 𝑐𝑐𝑟𝑟1𝐼𝐼3 − 𝑐𝑐𝑟𝑟𝑖𝑖𝐼𝐼�, (30) 

where 𝑐𝑐𝑟𝑟0 , 𝑐𝑐𝑟𝑟𝑟𝑟 , 𝑐𝑐𝑟𝑟1 , and 𝑐𝑐𝑟𝑟𝑖𝑖  represent null-point rotation, rotation saturation, nuclear-resonant 
rotation, and induction rotation, respectively. The current, 𝐼𝐼, controls the external magnetic field 
in the inner rotation chamber. Taken from Frisch and Segrè [9], the only device-specific parameters 
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for the predictions include 𝐵𝐵𝑟𝑟  (0.42 × 10−4  T), 𝑧𝑧𝑎𝑎  (1.05 × 10−4  m), and 𝑣𝑣  (800 m s–1). The 
theoretical predictions from Eq. 161–163 without adjusting any parameters are 𝑐𝑐𝑟𝑟0 = 0.054 A, 𝑐𝑐𝑟𝑟𝑟𝑟 
= 0.80, and 𝑐𝑐𝑟𝑟1 = 48 A–3. Substitution of these coefficients into Eq. 30 with 𝑐𝑐𝑟𝑟𝑖𝑖 = 0 produces 
Curve 4 in Fig. 4, where no free parameters are used. 

Despite its small contribution in the inner rotation chamber, the induction factor is 
estimated for its order of magnitude. While holding all three other parameters constant at the 
predicted values, fitting 𝑊𝑊cqd  (Eq. 30) for the experimental data in Fig. 4 yields 𝑐𝑐𝑟𝑟𝑖𝑖~0.57 A. 
Substitution into Eq. 164 produces 𝑘𝑘𝑖𝑖~7.4 × 10−4. Further substitution into Eq. 11 concludes that 
electron-spin collapse takes on the order of 𝑁𝑁𝑐𝑐~220 precession cycles. 

 

4. Discussion 
CQD postulates that the electron and nuclear magnetic moments in an external field 𝐵𝐵0 along 𝑧𝑧 
repel in the polar direction, which results in a revision to the sign of the induction term in the 
Landau–Lifshitz–Gilbert equation. Whereas precession is governed by the terms from the Bloch 
equation, collapse is modeled by the revised induction term. If 𝑘𝑘𝑖𝑖 = 0, the equation of motion 
reduces to the Bloch or equivalent Schrödinger equation [7, 10, 11, 26, 27], which does not model 
collapse [30]. While precession is the dominant motion, collapse is secondary but concurrent. 
Although the exact mechanism for the repulsion is to be investigated, a conjecture is diamagnetism 
extended from orbital to spin motions. Diamagnetic magnetization, a weak but universal induction 
effect on all atoms, causes repulsion [31, 32]. The relativistic momentum density in the Dirac wave 
field shows that the magnetic moment of an electron can be attributed to a circulating flow of 
electric charge (Eq. 34 in Appendix 1), similar to that in orbital motions [33]. Therefore, it is 
conceivable that diamagnetism applies to spin as well. In the laboratory reference frame, as �⃗�𝜇𝑒𝑒 and 
𝜇𝜇𝑛𝑛  precess in opposite directions, each azimuthal encounter may be viewed as a “collision”, 
causing repulsion. Because induction is related to relative motion, the induced field on the electron 
may be written as 𝐵𝐵�⃗ 𝑖𝑖 ∝ 𝑑𝑑(�̂�𝜇𝑒𝑒 − �̂�𝜇𝑛𝑛) 𝑑𝑑𝑡𝑡⁄ , and the corresponding induced torque is 𝜏𝜏𝑖𝑖 ∝ �̂�𝜇𝑒𝑒 × 𝐵𝐵�⃗ 𝑖𝑖. If 
�̂�𝜇𝑒𝑒 × 𝑑𝑑�̂�𝜇𝑛𝑛 𝑑𝑑𝑡𝑡⁄  averages out, the average induced torque becomes �̂�𝜇𝑒𝑒 × 𝑑𝑑�̂�𝜇𝑒𝑒 𝑑𝑑𝑡𝑡⁄ , matching the 
induction term in the Landau–Lifshitz–Gilbert equation. As �̂�𝜇𝑒𝑒  nears either up or down, the 
average induced torque approaches zero, providing stability. In the rotating reference frame that 
rotates at 𝜔𝜔𝑒𝑒 , the external 𝐵𝐵0  vanishes, �⃗�𝜇𝑒𝑒  becomes azimuthally stationary [34]; the rapidly 
precessing �⃗�𝜇𝑛𝑛 forms in the time-average sense a cone-shaped magnet, which repels 𝜇𝜇𝑒𝑒 towards ±𝑧𝑧. 
The sign function in the induction terms in the equations of motion is the key difference from the 
standard Landau–Lifshitz–Gilbert equation and is central to CQD. While standard damping always 
leads to a lower-energy state, collapse due to the co-quantum can reach a state of either higher or 
lower energy in the presence of an external magnetic field, according to the branching condition, 
which agrees with the Stern–Gerlach experimental observation. Numerical solutions to the CQD 
equations of motion, to be reported separately, have illustrated collapse with the induction term 
and none without. This postulate is consistent with the Pauli exclusion principle for two identical 
fermions, where the two magnetic moments repel towards anti-alignment. Therefore, one may 
regard this postulate as an extension to the Pauli exclusion principle. Note that while diamagnetism 
explains the collapse term, paramagnetism is expected to perturb the precession term slightly, 
which is neglected here.  

CQD also postulates that the polar angle of �⃗�𝜇𝑛𝑛  in flight varies negligibly. Because the 
nuclear Larmor frequency is four orders of magnitude smaller (i.e., |𝜔𝜔𝑛𝑛| ≪ |𝜔𝜔𝑒𝑒|), nuclear spin 
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collapses much more slowly than electron spin. Because no data on the collapse rates have been 
found in the literature, we reference the 𝑇𝑇1 relaxation times. Typical 𝑇𝑇1 relaxation times in electron 
paramagnetic resonance are on the µs scale [35], consistent with the previous estimation of the 
collapse time scale of �⃗�𝜇𝑒𝑒 [5]. In contrast, typical 𝑇𝑇1 relaxation times in gas-phase nuclear magnetic 
resonance are on the ms scale [36], indicating the order-of-magnitude collapse time of �⃗�𝜇𝑛𝑛. In a 
typical Stern–Gerlach experiment [5, 37], the main external field 𝐵𝐵0 along 𝑧𝑧 is at least 0.3 T (𝐵𝐵0 >
𝐵𝐵𝑒𝑒 ≫ 𝐵𝐵𝑛𝑛, the Paschen–Back regime [16]), the length of the main field is ~35 mm, and the most 
likely atomic speed 𝑣𝑣 is ~800 m s–1. Consequently, the flight time through the main field is only 
~44 μs, which is long enough for �⃗�𝜇𝑒𝑒 to collapse but too short for 𝜇𝜇𝑛𝑛 to collapse. In fact, the fringe 
field on the source side of the main field collapses �⃗�𝜇𝑒𝑒  [2]. Besides the two distinct collapse 
branches due to the quantization of �⃗�𝜇𝑒𝑒, no additional branches due to the quantization of �⃗�𝜇𝑛𝑛 have 
been observed by Frisch and Segrè [9] despite the prediction of up to eight branches total [38]. For 
𝑁𝑁𝑐𝑐~220 (Eq. 11) estimated from the Frisch–Segrè experimental data shown in Fig. 4, the collapse 
time constants (𝑇𝑇𝑐𝑐, Eq. 12 and its nuclear counterpart) at the main field strength are computed to 
be ~3 × 10−8 and ~4 × 10−4 s for �⃗�𝜇𝑒𝑒 and �⃗�𝜇𝑛𝑛, respectively, which are consistent with the above-
mentioned corresponding 𝑇𝑇1 relaxation times in orders of magnitude [35] [36]. This postulate, 
extended to the weaker-field inner rotation chamber, is consistent with the selection rule for 
observing an electron-spin–resonance transition, stating that the magnetic quantum number of the 
nuclear spin remains constant (i.e., Δ𝑚𝑚𝐼𝐼 = 0) [39]. The selection rule was also a major basis for 
Rabi’s revision to the Majorana formula [16]. 

The heart-shaped 𝑝𝑝𝑛𝑛1 in Eq. 24 (Fig. 3, Inset a) can be understood in two ways. First, the 
integral can be perceived as the expected transmittance through Stage SG1 for a given 𝜃𝜃𝑛𝑛. All 
principal quanta with 𝜃𝜃𝑒𝑒 < 𝜃𝜃𝑛𝑛 collapse to +𝑧𝑧, and the atoms propagate through the slit further; 
otherwise, the atoms are blocked by the slit. The greater the 𝜃𝜃𝑛𝑛 is, the greater the transmittance, 
proportional to the solid angle formed by the cone having a half angle of 𝜃𝜃𝑛𝑛 (Fig. 5). Second, one 
may examine how much principal quanta at the source around each 𝜃𝜃𝑒𝑒 within 𝑑𝑑𝜃𝜃𝑒𝑒 contribute to 
𝑝𝑝𝑛𝑛1. For 𝜃𝜃𝑒𝑒 = 0, the contribution forms a perfect spherical distribution of co-quanta because co-
quanta in any direction can reach the second stage. For 0 < 𝜃𝜃𝑒𝑒 < 𝜋𝜋 , the contribution forms a 
truncated sphere with the cone of 𝜃𝜃𝑛𝑛 < 𝜃𝜃𝑒𝑒 removed because co-quanta in this range have collapsed 
the principal quanta to the blocked branch. For 𝜃𝜃𝑒𝑒 = 𝜋𝜋, the contribution vanishes because the 
principal quanta are always in the blocked branch. Integrating these (truncated) spheres form the 
final heart shape. Conversely, the co-quantum angular distribution for the opposite branch is an 
inverted heart shape. Average the two complementary shapes recovers the original isotropic 𝑝𝑝𝑛𝑛0. 

 
Fig. 5. Illustration of the cone of �̂�𝜇𝑛𝑛 formed by precession around the external main field, 𝐵𝐵0. n: 
nuclear magnetic moment (co-quantum), �̂�𝜇𝑛𝑛. Any electron magnetic moment (principal quantum), 
�̂�𝜇𝑒𝑒, precessing around 𝐵𝐵0 within the cone collapses up, whereas �̂�𝜇𝑒𝑒 precessing outside the cone 
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collapses down. For a given 𝜃𝜃𝑛𝑛, the probability for the atom from the oven to reach the up branch 
in the single-stage Stern–Gerlach experiment is proportional to the solid angle of the cone. 

A key reason for the agreement between CQD and the Frisch–Segrè experimental 
observation is that the angular distribution of the co-quantum (i.e., the nuclear magnetic moment) 
is changed from an isotropic shape (Eq. 15) to a continuous heart shape (Eq. 24) due to the 
polarization. The subsequent effects are illustrated using the evolution of the curves in Fig. 4. As 
more effects are included, the model becomes more and more accurate while all parameters were 
given (i.e., no parameters were tuned to fit the experimental data). If the heart shape were incorrect, 
the agreement would be completely off. In comparison, the Majorana or Landau–Zener formula 
neglected the nuclear magnetic moment altogether, and Rabi used an isotropic angular distribution 
instead of the heart shape [16]. Note that as the wire current approaches infinity, Rabi’s formula 
predicts a maximum of 1

2𝐼𝐼+1
= 1

4
, which is well below the experimental peak of 31% (Fig. 1); here, 

𝐼𝐼 = 3
2

 denotes the nuclear spin number for potassium-39. Further, Rabi’s standard hyperfine 
coupling does not contain the induction terms in CQD and hence does not model collapse. Also, 
the torque-averaged fields provide greater agreement than the self-averaged fields (see Appendix 
1). 

Quantum mechanics, celebrated for its countless triumphs, still pose mysteries as discussed 
insightfully in recent literature [30, 40-43]. The Copenhagen interpretation construes that an 
electron spin is simultaneously in both eigenstates and collapses statistically upon measurement to 
either [7]. The collapse is not modeled by the original Schrödinger equation but stated separately 
as a measurement postulate [30]. Debatable inconsistency has been found in thought experiments, 
such as “Schrödinger’s cat” [44-46].  

CQD potentially offers new insight. If co-quanta are isotropically distributed, CQD has 
been verified with quantum mechanics by exactly reproducing the wave function and the density 
operator (Appendix 3) as well as the uncertainty relation (Appendix 6) and entangled wave 
function (Appendix 7). The probabilities of reaching the two eigenstates split according to 
cos2 𝜃𝜃𝑒𝑒

2
: sin2 𝜃𝜃𝑒𝑒

2
; the wave function is reproduced in Eq. 18. However, if the co-quanta have, for 

example, a heart-shaped distribution (Eq. 24), the split becomes 1 − sin4 𝜃𝜃𝑒𝑒
2

: sin4 𝜃𝜃𝑒𝑒
2

 (Eq. 88 and 
89 in Appendix 3); the wave function is revised accordingly (Eq. 90). The density operator is found 
to originate from a pre-averaging counterpart with independent realizations (Appendix 3). The 
measurement uncertainty product, explained by co-quanta, depends on the initial phase of the 
principal quanta and the measurement sequence, as shown by the uncertainty equality (Eq. 186), 
which leads to the familiar quantum mechanical inequality (Eq. 187). CQD has also enabled the 
derivation from the classical Bloch equation to the quantum Schrödinger–Pauli equation [17], 
while the latter has thus far been treated as a postulate. 

CQD can be further tested with atoms having nuclear spins of 0 (𝜇𝜇𝑛𝑛 = 0), which may 
collapse differently in Stern–Gerlach experiments. A natural question is whether higher-order 
nuclear multipoles could serve as co-quanta. Examples include 38m1K, 50K, 94Ag, and 130Ag, which 
are isotopes of the stable 39K, 107Ag, and 109Ag. Unfortunately, these isotopes have short lifetimes 
ranging from 100s to 10s of ms. Note that free electrons have not been used owing to the Lorentz 
force and orbital magnetic moment. 
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Since the submission of this manuscript, our team has produced several new manuscripts 
to support this work. Titimbo et al. numerically modeled the Frisch–Segrè experiment using CQD 
via the Bloch equation [47], whereas He et al. numerically modeled the experiment using CQD 
via the Schrödinger equation [48]. Both works have numerically confirmed the analytical solution 
presented here and the equivalence between the the Bloch equation and the Schrödinger equation 
stated by Majorana. Interestingly, Majorana wrote the “Bloch” equation [10, 11] fourteen years 
before Bloch published his eponymous equation [49]. The author recently derived from the Bloch 
equation, which Bloch intended for macroscopic magnetization instead of individual nuclear 
magnetic moments [49], to the Schrödinger or Schrödinger–Pauli equation [17]. Kahraman et al. 
demonstrated that the standard existing treatment of hyperfine interaction, consistent with the 
Breit–Rabi formula [38], cannot model the Frisch–Segrè experiment accurately but can be 
improved by incorporating CQD features [50]. The treatment also does not agree with the Rabi 
formula [16].  

While no alternative theory, to the best of our knowledge, matches the Frisch–Segrè 
experiment, a recent multi-stage Stern–Gerlach experiment on superatomic icosahedral cage-
clusters Mn@Sn12 also reveals discrepancy of the Landau–Zener formula from experimental 
observation [51]. 

 

5. Conclusions 
CQD, based on the sign-modified Landau–Lifshitz–Gilbert equation, provides a plausible collapse 
mechanism for electron spin in Stern–Gerlach experiments. CQD models both spin evolution and 
collapse by the same equations of motion. With an anisotropic angular distribution of co-quanta, 
CQD revises the wave function and accurately predicts the Frisch–Segrè experimental observation 
in absolute units without fitting with adjustable parameter, achieving 𝑝𝑝 < 8 × 10−7—an objective 
statistical indication that reflects both correlation and degrees of freedom. Therefore, it is 
extremely unlikely that CQD happens to match the experimental observation so well by sheer 
chance. Further, with an isotropic angular distribution of co-quanta, CQD is theoretically 
corroborated by quantum mechanics. Both the strong experimental evidence and the exact 
quantitative agreement with quantum mechanics in diverse forms collectively support CQD. Like 
statistical mechanics [52], which uses molecular properties to predict macroscopic properties by 
ensemble averaging, CQD reproduces quantum mechanical properties by ensemble averaging over 
co-quanta (Appendix 3). If orthodox quantum mechanics is incomplete [44], CQD may stimulate 
development for a complete theory.  
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Appendix 1. Derivation of torque-averaged fields  
Given the focus of the Landau–Lifshitz–Gilbert equation on torque, we derive the torque-averaged 
magnetic flux densities applied on the electron and the nucleus by each other. 

In relativistic quantum mechanics, the momentum density in the Dirac wave field is given 
by [33] 

 �⃗�𝐺 = ℏ
2𝑖𝑖

[𝜓𝜓†∇𝜓𝜓 − (∇𝜓𝜓†)𝜓𝜓] + ℏ
4
∇ × (𝜓𝜓†�⃗�𝜎4×4𝜓𝜓). (31) 

Here, 𝜓𝜓  denotes the spatial wave function, 𝜓𝜓𝑟𝑟 , multiplied by the spinor 𝑤𝑤1(0) = (1,0,0,0)† ; 
�⃗�𝜎4×4 = 𝜎𝜎1𝑥𝑥� + 𝜎𝜎2𝑦𝑦� + 𝜎𝜎3�̂�𝑧 , where 𝜎𝜎1 = −𝑖𝑖𝛼𝛼2𝛼𝛼3 , 𝜎𝜎2 = −𝑖𝑖𝛼𝛼3𝛼𝛼1 , 𝜎𝜎3 = −𝑖𝑖𝛼𝛼1𝛼𝛼2 ; matrices 𝛼𝛼1 , 𝛼𝛼2 , 
and 𝛼𝛼3 are from the Dirac equation [53]:  

 𝛼𝛼1 = �

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

�, 𝛼𝛼2 = �

0 0 0 −𝑖𝑖
0 0 𝑖𝑖 0
0 −𝑖𝑖 0 0
𝑖𝑖 0 0 0

�, and 𝛼𝛼3 = �

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

�. (32) 

While the first term on the right side of Eq. 31 is attributed to the translational motion of the 
electron, the second term is associated with circulating flow of energy [33].  

Following Ohanian [33], an 𝑠𝑠  orbital wave function is considered; 𝜓𝜓𝑟𝑟
†𝜓𝜓𝑟𝑟  is set to the 

Gaussian distribution, 

 𝜌𝜌(𝑟𝑟) = � 1
𝜋𝜋𝑎𝑎02

�
3
2 exp �− 𝑟𝑟2

𝑎𝑎02
�, (33) 

where 𝑟𝑟 denotes the radial coordinate. The average radius, 2 𝑎𝑎0
√𝜋𝜋

, is set to the van der Waals atomic 
radius, 𝑅𝑅.  

While the first term in Eq. 31 vanishes, the second term becomes 

 �⃗�𝐺 = ℏ
2𝑎𝑎02

𝜌𝜌�̂�𝑧 × 𝑟𝑟. (34) 

The differential element of the magnetic dipole moment is [33] 

 𝑑𝑑𝑚𝑚��⃗ 𝑒𝑒(𝑟𝑟) = 𝛾𝛾𝑒𝑒𝑟𝑟 × �ℏ
4
∇ × (𝜓𝜓†𝛾𝛾0�⃗�𝜎4×4𝜓𝜓)� 𝑑𝑑3𝑟𝑟. (35) 

From 

 𝛾𝛾0 = �

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

�, (36) 

we reach 

 𝑑𝑑𝑚𝑚��⃗ 𝑒𝑒(𝑟𝑟) = 𝛾𝛾𝑒𝑒𝑟𝑟 × �⃗�𝐺𝑑𝑑3𝑟𝑟. (37) 

The field at location 𝑟𝑟 from �⃗�𝜇𝑛𝑛 is given by [31, 32] 
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 𝐵𝐵�⃗ (𝑟𝑟) = 𝜇𝜇0
4π𝑟𝑟3

[3(�⃗�𝜇𝑛𝑛 ⋅ �̂�𝑟)�̂�𝑟 − �⃗�𝜇𝑛𝑛] + 2𝜇𝜇0
3
�⃗�𝜇𝑛𝑛𝛿𝛿(𝑟𝑟). (38) 

The differential element of the torque from 𝜇𝜇𝑛𝑛 is 

 𝑑𝑑𝜏𝜏𝑛𝑛(𝑟𝑟) = 𝑑𝑑𝑚𝑚��⃗ 𝑒𝑒(𝑟𝑟) × 𝐵𝐵�⃗ (𝑟𝑟). (39) 

Volumetric integration yields 

 𝑚𝑚��⃗ 𝑒𝑒(𝑟𝑟) = ∫𝑑𝑑𝑚𝑚��⃗ 𝑒𝑒 = 𝛾𝛾𝑒𝑒
ℏ
2
�̂�𝑧, (40) 

which equals �⃗�𝜇𝑒𝑒, and 

 𝜏𝜏𝑛𝑛 = ∫𝑑𝑑𝜏𝜏𝑛𝑛 = �⃗�𝜇𝑒𝑒 × � 4𝜇𝜇0
3π3𝑅𝑅3

�⃗�𝜇𝑛𝑛�. (41) 

Therefore, the torque-averaged 𝐵𝐵 field from �⃗�𝜇𝑛𝑛 applied on the electron is given by 

 𝐵𝐵�⃗ 𝑛𝑛 = 4𝜇𝜇0
3π3𝑅𝑅3

�⃗�𝜇𝑛𝑛. (42) 

Now, we switch to a classical approach. On the time scale pertinent to the precession cycle, 
we model the much faster motion of the 𝑠𝑠 valence electron with the probability density, 𝜌𝜌.  

The current density at position 𝑟𝑟 is given by 

 𝚥𝚥 = −𝑒𝑒𝜌𝜌𝜔𝜔��⃗ × 𝑟𝑟, (43) 

where −𝑒𝑒 denotes the electron charge and 𝜔𝜔��⃗  denotes the angular velocity.  

The differential element of the magnetic dipole moment is 

 𝑑𝑑𝑚𝑚��⃗ 𝑒𝑒(𝑟𝑟) = 1
2
𝑟𝑟 × 𝚥𝚥𝑑𝑑3𝑟𝑟. (44) 

The differential element of the torque is (Eq. 39) 

 𝑑𝑑𝜏𝜏𝑛𝑛(𝑟𝑟) = 𝑑𝑑𝑚𝑚��⃗ 𝑒𝑒(𝑟𝑟) × 𝐵𝐵�⃗ (𝑟𝑟). (45) 

Three distributions of 𝜌𝜌 are considered.  

First, 𝜌𝜌 is set to the Gaussian distribution given by Eq. 33. Volumetric integration produces 

 𝑚𝑚��⃗ 𝑒𝑒 = ∫𝑑𝑑𝑚𝑚��⃗ 𝑒𝑒 = −1
2
𝑒𝑒𝑎𝑎02𝜔𝜔��⃗ = −𝜋𝜋

8
𝑒𝑒𝑅𝑅2𝜔𝜔��⃗  (46) 

and 

 𝜏𝜏𝑛𝑛 = ∫𝑑𝑑𝜏𝜏𝑛𝑛 = 𝑚𝑚��⃗ 𝑒𝑒 × � 4𝜇𝜇0
3π3𝑅𝑅3

�⃗�𝜇𝑛𝑛�. (47) 

Averaging yields 

 〈𝜏𝜏𝑛𝑛〉 = 〈𝑚𝑚��⃗ 𝑒𝑒〉 × � 4𝜇𝜇0
3π3𝑅𝑅3

�⃗�𝜇𝑛𝑛�. (48) 

For an 𝑠𝑠 valence electron, both the orbital angular momentum and the orbital magnetic 
moment vanish; accordingly, we have 〈𝑚𝑚��⃗ 𝑒𝑒〉 = �⃗�𝜇𝑒𝑒, which is due to spin only. Consequently,  
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 〈𝜏𝜏𝑛𝑛〉 = �⃗�𝜇𝑒𝑒 × � 4𝜇𝜇0
3π3𝑅𝑅3

�⃗�𝜇𝑛𝑛�. (49) 

Therefore, we reach 

 𝐵𝐵�⃗ 𝑛𝑛 = 4𝜇𝜇0
3π3𝑅𝑅3

�⃗�𝜇𝑛𝑛, (50) 

which agrees with the relativistic quantum mechanical solution (Eq. 42). 

Second, using the tabulated approximate 4s wave function, 𝜓𝜓𝑟𝑟, for potassium (Table S1) 
[54] based on Hartree’s self-consistent field [55], we numerically reached 

 𝐵𝐵�⃗ 𝑛𝑛 = 0.138𝜇𝜇0
𝜋𝜋𝑅𝑅3

�⃗�𝜇𝑛𝑛, (51) 

where the average radius is set to  𝑅𝑅 . Coincidentally, this solution differs from the Gaussian 
solution (Eq. 50) by only 2%. 

 

Table S1. Normalized 𝑃𝑃(4𝑠𝑠)  for potassium. 𝜓𝜓𝑟𝑟(0) = �9.76 (4𝜋𝜋)⁄  and 𝜓𝜓𝑟𝑟(𝑟𝑟) = 𝑃𝑃 ��4𝜋𝜋𝑎𝑎0𝑟𝑟�⁄  

for 𝑟𝑟 > 0. [54] 

𝒓𝒓 𝒂𝒂𝟎𝟎⁄  𝑷𝑷 𝒓𝒓 𝒂𝒂𝟎𝟎⁄  𝑷𝑷 𝒓𝒓 𝒂𝒂𝟎𝟎⁄  𝑷𝑷 𝒓𝒓 𝒂𝒂𝟎𝟎⁄  𝑷𝑷 
0.000 0.0000 0.280 –0.0993 2.800 –0.2524 13.000 –0.0634 
0.005 0.0142 0.300 –0.0972 3.000 –0.2926 14.000 –0.0443 
0.010 0.0257 0.350 –0.0830 3.200 –0.3279 15.000 –0.0305 
0.015 0.0349 0.400 –0.0598 3.400 –0.3583 16.000 –,0209 
0.020 0.0421 0.450 –0.0312 3.600 –0.3840 17.000 –0.0138 
0.030 0.0509 0.500 –0.0003 3.800 –0.4052 18.000 –0.0095 
0.040 0.0540 0.550 0.0307 4.000 –0.4221 19.000 –0.0063 
0.050 0.0527 0.600 0.0601 4.500 –0.4476 20.000 –0.0042 
0.060 0.0480 0.700 0.1105 5.000 –0.4530 21.000 –0.0028 
0.070 0.0409 0.800 0.1465 5.500 –0.4430 22.000 –0.0018 
0.080 0.0321 0.900 0.1679 6.000 –0.4220 23.000 –0.0012 
0.090 0.0220 1.000 0.1761 6.500 –0.3937 24.000 –0.0008 
0.100 0.0113 1.100 0.1734 7.000 –0.3609 25.000 –0.0005 
0.120 –0.0108 1.200 0.1623 7.500 –0.3264 26.000 –0.0003 
0.140 –0.0321 1.400 0.1226 8.000 –0.2916 27.000 –0.0002 
0.160 –0.0511 1.600 0.0699 8.500 –0.2578 28.000 –0.0001 
0.180 –0.0673 1.800 0.0119 9.000 –0.2261 29.000 –0.0001 
0.200 –0.0801 2.000 –0.0470 9.500 –0.1967 30.000 0.0000 
0.220 –0.0896 2.200 –0.1040 10.000 –0.1700 31.000 0.0000 
0.240 –0.0958 2.400 –0.1578 11.000 –0.1246 
0.260 –0.0989 2.600 –0.2074 12.000 –0.0896 
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Third, 𝜌𝜌 is set to the following top-hat distribution, which is a zeroth-order approximation 
to the actual distribution: 

 𝜌𝜌(𝑟𝑟) = 3
4𝜋𝜋𝑅𝑅3

 (52) 

for 𝑟𝑟 ≤ 𝑅𝑅 and 𝜌𝜌 = 0 otherwise. Repeating the derivation starting from Eq. 43 yields  

 𝐵𝐵�⃗ 𝑛𝑛 = 5𝜇𝜇0
16π𝑅𝑅3

�⃗�𝜇𝑛𝑛. (53) 

In addition to the above torque-averaged fields, for comparison, the self-averaged fields 
from Eq. 38 are derived: 

 𝐵𝐵�⃗ 𝑛𝑛 = 2𝜇𝜇0
3
𝜌𝜌(0)�⃗�𝜇𝑛𝑛. (54) 

For the Gaussian, tabulated, and top-hat distributions, 𝜌𝜌(0) = 8
𝜋𝜋3𝑅𝑅3

, 14.2
𝜋𝜋𝑅𝑅3

, and 3
4𝜋𝜋𝑅𝑅3

, respectively; 

correspondingly, 𝐵𝐵�⃗ 𝑛𝑛 = 16𝜇𝜇0
3𝜋𝜋3𝑅𝑅3

�⃗�𝜇𝑛𝑛, 28.4𝜇𝜇0
3π𝑅𝑅3

�⃗�𝜇𝑛𝑛, and 𝜇𝜇0
2π𝑅𝑅3

�⃗�𝜇𝑛𝑛. These self-averaged fields, related to the 
Fermi contact interaction, are expected to be less compatible with the torque-based Landau–
Lifshitz–Gilbert and CQD equations than the above torque-averaged fields. 

The six solutions for 𝐵𝐵�⃗ 𝑛𝑛 differ only by a constant factor. Eq. 53, however, predicts the 
experimental observation (Fig. 4) most accurately, achieving a coefficient of determination of 
𝑅𝑅2 = 0.9787. The alternatives produce negative 𝑅𝑅2, indicating worse accuracy than modeling 
with a horizontal line intercepting at the mean observation. Therefore, we choose the torque-
averaged field given by Eq. 53, rewritten below: 

 𝐵𝐵�⃗ 𝑛𝑛 = 5𝜇𝜇0
16π𝑅𝑅3

�⃗�𝜇𝑛𝑛. (55) 

Reciprocally, the torque-averaged field from �⃗�𝜇𝑒𝑒 applied on the nucleus is 

 𝐵𝐵�⃗ 𝑒𝑒 = 5𝜇𝜇0
16π𝑅𝑅3

�⃗�𝜇𝑒𝑒. (56)  
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Appendix 2. Derivation of CQD equations of motion 
We apply the Landau–Lifshitz–Gilbert equation to both �̂�𝜇𝑒𝑒 and �̂�𝜇𝑛𝑛, yielding 

 𝑑𝑑𝜇𝜇�𝑒𝑒
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝑒𝑒�̂�𝜇𝑒𝑒 × �𝐵𝐵�⃗ + 𝐵𝐵�⃗ 𝑛𝑛� − 𝑘𝑘𝑖𝑖�̂�𝜇𝑒𝑒 × 𝑑𝑑𝜇𝜇�𝑒𝑒
𝑑𝑑𝑑𝑑

 (57) 

and 

 𝑑𝑑𝜇𝜇�𝑛𝑛
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝑛𝑛�̂�𝜇𝑛𝑛 × �𝐵𝐵�⃗ + 𝐵𝐵�⃗ 𝑒𝑒� − 𝑘𝑘𝑖𝑖�̂�𝜇𝑛𝑛 × 𝑑𝑑𝜇𝜇�𝑛𝑛
𝑑𝑑𝑑𝑑

. (58) 

The external field is 

 𝐵𝐵�⃗ = �
0 
𝐵𝐵𝑦𝑦 
𝐵𝐵𝑧𝑧
�, (59) 

where 𝐵𝐵𝑥𝑥 is neglected for brevity. The internal torque-averaged fields from the nucleus and the 
electron applied on each other (Appendix 1) are  

 𝐵𝐵�⃗ 𝑛𝑛 = 𝐵𝐵𝑛𝑛�̂�𝜇𝑛𝑛 (60) 

and 

 𝐵𝐵�⃗ 𝑒𝑒 = 𝐵𝐵𝑒𝑒�̂�𝜇𝑒𝑒. (61) 

We have 

 �̂�𝜇𝑒𝑒 = �
sin𝜃𝜃𝑒𝑒cos𝜙𝜙𝑒𝑒 
sin𝜃𝜃𝑒𝑒sin𝜙𝜙𝑒𝑒 

cos𝜃𝜃𝑒𝑒
� (62) 

and 

 �̂�𝜇𝑛𝑛 = �
sin𝜃𝜃𝑛𝑛cos𝜙𝜙𝑛𝑛 
sin𝜃𝜃𝑛𝑛sin𝜙𝜙𝑛𝑛 

cos𝜃𝜃𝑛𝑛
�, (63) 

where 𝜃𝜃 and 𝜙𝜙 denote the polar and azimuthal angles, respectively. 

Combining the above equations yields 

 �̇�𝜃𝑒𝑒 = −𝛾𝛾𝑒𝑒�𝐵𝐵𝑦𝑦 cos𝜙𝜙𝑒𝑒 + 𝐵𝐵𝑛𝑛 sin𝜃𝜃𝑛𝑛 sin(𝜙𝜙𝑛𝑛 − 𝜙𝜙𝑒𝑒)� + 𝑘𝑘𝑖𝑖�̇�𝜙𝑒𝑒 sin𝜃𝜃𝑒𝑒, (64) 

 �̇�𝜃𝑛𝑛 = −𝛾𝛾𝑛𝑛�𝐵𝐵𝑦𝑦 cos𝜙𝜙𝑛𝑛 + 𝐵𝐵𝑒𝑒 sin𝜃𝜃𝑒𝑒 sin(𝜙𝜙𝑒𝑒 − 𝜙𝜙𝑛𝑛)� + 𝑘𝑘𝑖𝑖�̇�𝜙𝑛𝑛 sin𝜃𝜃𝑛𝑛, (65) 

 �̇�𝜙𝑒𝑒 = −𝛾𝛾𝑒𝑒�𝐵𝐵𝑧𝑧 + 𝐵𝐵𝑛𝑛 cos𝜃𝜃𝑛𝑛 − cot 𝜃𝜃𝑒𝑒 �𝐵𝐵𝑦𝑦 sin𝜙𝜙𝑒𝑒 + 𝐵𝐵𝑛𝑛 sin𝜃𝜃𝑛𝑛 cos(𝜙𝜙𝑛𝑛 − 𝜙𝜙𝑒𝑒)�� − 𝑘𝑘𝑖𝑖 �̇�𝜃𝑒𝑒
sin𝜃𝜃𝑒𝑒

, (66) 

and 

 �̇�𝜙𝑛𝑛 = −𝛾𝛾𝑛𝑛�𝐵𝐵𝑧𝑧 + 𝐵𝐵𝑒𝑒 cos 𝜃𝜃𝑒𝑒 − cot 𝜃𝜃𝑛𝑛 �𝐵𝐵𝑦𝑦 sin𝜙𝜙𝑛𝑛 + 𝐵𝐵𝑒𝑒 sin𝜃𝜃𝑒𝑒 cos(𝜙𝜙𝑒𝑒 − 𝜙𝜙𝑛𝑛)�� − 𝑘𝑘𝑖𝑖 �̇�𝜃𝑛𝑛
sin𝜃𝜃𝑛𝑛

. (67) 

To implement the second CQD postulate, we revise the sign of the last term in each of the above 
four equations, producing the CQD equations of motion (Eq. 5–8). Note that azimuthal angles are 



27 

not defined when the polar angles are 0 or 𝜋𝜋. Therefore, when 𝜃𝜃𝑒𝑒 = 0 or 𝜋𝜋, we use �̇�𝜙𝑒𝑒 = 0; when 
𝜃𝜃𝑛𝑛 = 0 or 𝜋𝜋, we use �̇�𝜙𝑛𝑛 = 0. 

If 𝐵𝐵𝑥𝑥 ≠ 0, the above equations can be extended by the following substitutions: 

 𝐵𝐵𝑦𝑦 cos𝜙𝜙𝑒𝑒 → −𝐵𝐵𝑥𝑥 sin𝜙𝜙𝑒𝑒 + 𝐵𝐵𝑦𝑦 cos𝜙𝜙𝑒𝑒, 

 𝐵𝐵𝑦𝑦 cos𝜙𝜙𝑛𝑛 → −𝐵𝐵𝑥𝑥 sin𝜙𝜙𝑛𝑛 + 𝐵𝐵𝑦𝑦 cos𝜙𝜙𝑛𝑛, 

 𝐵𝐵𝑦𝑦 sin𝜙𝜙𝑒𝑒 → 𝐵𝐵𝑥𝑥 cos𝜙𝜙𝑒𝑒 + 𝐵𝐵𝑦𝑦 sin𝜙𝜙𝑒𝑒, 

and 

 𝐵𝐵𝑦𝑦 sin𝜙𝜙𝑛𝑛 → 𝐵𝐵𝑥𝑥 cos𝜙𝜙𝑛𝑛 + 𝐵𝐵𝑦𝑦 sin𝜙𝜙𝑛𝑛.  
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Appendix 3. CQD derivation of density operator and wave function 
CQD reproduces the quantum mechanical density operator and wave function with an isotropic 
angular distribution of co-quanta (�̂�𝜇𝑛𝑛) and extends them with an anisotropic angular distribution 
of co-quanta.  

For a given �̂�𝜇𝑒𝑒 , the CQD prediction expressions (see Methods) for two independent 
realizations are written in dual spaces [17]: 

 |�̂�𝜇𝑒𝑒©�̂�𝜇𝑛𝑛𝑖𝑖⟩ = 𝐶𝐶𝑖𝑖+(�̂�𝜇𝑒𝑒, �̂�𝜇𝑛𝑛𝑖𝑖)|+𝑧𝑧⟩ + 𝐶𝐶𝑖𝑖−(�̂�𝜇𝑒𝑒, �̂�𝜇𝑛𝑛𝑖𝑖)exp(𝑖𝑖𝜙𝜙𝑒𝑒)|−𝑧𝑧⟩ (68) 

and 

 ��̂�𝜇𝑒𝑒©�̂�𝜇𝑛𝑛𝑛𝑛| = 𝐶𝐶𝑛𝑛+��̂�𝜇𝑒𝑒 , �̂�𝜇𝑛𝑛𝑛𝑛�⟨+𝑧𝑧| + 𝐶𝐶𝑛𝑛−��̂�𝜇𝑒𝑒 , �̂�𝜇𝑛𝑛𝑛𝑛� exp(−𝑖𝑖𝜙𝜙𝑒𝑒) ⟨−𝑧𝑧|. (69) 

Integer subscripts 𝑖𝑖  and 𝑗𝑗  denote independent realizations (i.e., 𝑖𝑖 ≠ 𝑗𝑗). Each binary coefficient 
represents either one or zero according to the branching condition (Eq. 10).  

The pre-averaging density operator is defined as 

 𝜌𝜌0 ≝ |�̂�𝜇𝑒𝑒©�̂�𝜇𝑛𝑛𝑖𝑖⟩��̂�𝜇𝑒𝑒©�̂�𝜇𝑛𝑛𝑛𝑛|, (70) 

which serves as a bridge to quantum mechanics [17]. Substitution of Eq. 68 and 69 results in 

 𝜌𝜌0 = [𝐶𝐶𝑖𝑖+|+𝑧𝑧⟩ + 𝐶𝐶𝑖𝑖− exp(𝑖𝑖𝜙𝜙𝑒𝑒) |−𝑧𝑧⟩] �𝐶𝐶𝑛𝑛+⟨+𝑧𝑧| + 𝐶𝐶𝑛𝑛− exp(−𝑖𝑖𝜙𝜙𝑒𝑒) ⟨−𝑧𝑧|�. (71) 

Expansion leads to 

 𝜌𝜌0 = 𝐶𝐶𝑖𝑖+𝐶𝐶𝑛𝑛+|+𝑧𝑧⟩⟨+𝑧𝑧| + 𝐶𝐶𝑖𝑖−𝐶𝐶𝑛𝑛−|−𝑧𝑧⟩⟨−𝑧𝑧| 

 +𝐶𝐶𝑖𝑖+𝐶𝐶𝑛𝑛− exp(−𝑖𝑖𝜙𝜙𝑒𝑒) |+𝑧𝑧⟩⟨−𝑧𝑧| + 𝐶𝐶𝑖𝑖−𝐶𝐶𝑛𝑛+ exp(+𝑖𝑖𝜙𝜙𝑒𝑒) |−𝑧𝑧⟩⟨+𝑧𝑧|. (72) 

If the dual vectors represented identical realizations, the cross terms would vanish because 
the binary coefficients are mutually exclusive for each realization: 𝐶𝐶𝑖𝑖± ⋅ 𝐶𝐶𝑖𝑖∓ = 0 and 𝐶𝐶𝑛𝑛± ⋅ 𝐶𝐶𝑛𝑛∓ =
0.  

If �̂�𝜇𝑛𝑛 is random for a given �̂�𝜇𝑒𝑒, ensemble averaging 𝜌𝜌0 over all realizations of �̂�𝜇𝑛𝑛, denoted 
by 〈 〉𝑛𝑛, yields 

 𝜌𝜌1 = 〈𝜌𝜌0〉𝑛𝑛 = 〈𝐶𝐶𝑖𝑖+𝐶𝐶𝑛𝑛+〉𝑛𝑛|+𝑧𝑧⟩⟨+𝑧𝑧| + 〈𝐶𝐶𝑖𝑖−𝐶𝐶𝑛𝑛−〉𝑛𝑛|−𝑧𝑧⟩⟨−𝑧𝑧| 

 +〈𝐶𝐶𝑖𝑖+𝐶𝐶𝑛𝑛− exp(−𝑖𝑖𝜙𝜙𝑒𝑒)〉𝑛𝑛|+𝑧𝑧⟩⟨−𝑧𝑧| + 〈𝐶𝐶𝑖𝑖−𝐶𝐶𝑛𝑛+ exp(+𝑖𝑖𝜙𝜙𝑒𝑒)〉𝑛𝑛|−𝑧𝑧⟩⟨+𝑧𝑧|. (73) 

The following equations are invoked next: 〈𝐶𝐶𝑖𝑖+〉𝑛𝑛 = 〈𝐶𝐶𝑛𝑛+〉𝑛𝑛, denoted by 〈𝐶𝐶+〉𝑛𝑛; 〈𝐶𝐶𝑖𝑖−〉𝑛𝑛 =
〈𝐶𝐶𝑛𝑛−〉𝑛𝑛 , denoted by 〈𝐶𝐶−〉𝑛𝑛 . Given the independence of the two realizations (𝑖𝑖 ≠ 𝑗𝑗 ), we have 
〈𝐶𝐶𝑖𝑖±𝐶𝐶𝑛𝑛±〉𝑛𝑛 = 〈𝐶𝐶𝑖𝑖±〉𝑛𝑛〈𝐶𝐶𝑛𝑛±〉𝑛𝑛 = 〈𝐶𝐶±〉𝑛𝑛2  and 〈𝐶𝐶𝑖𝑖±𝐶𝐶𝑛𝑛∓〉𝑛𝑛 = 〈𝐶𝐶𝑖𝑖±〉𝑛𝑛〈𝐶𝐶𝑛𝑛∓〉𝑛𝑛 = 〈𝐶𝐶+〉𝑛𝑛〈𝐶𝐶−〉𝑛𝑛, yielding 

 𝜌𝜌1 = 〈𝐶𝐶+〉𝑛𝑛2 |+𝑧𝑧⟩⟨+𝑧𝑧| + 〈𝐶𝐶−〉𝑛𝑛2 |−𝑧𝑧⟩⟨−𝑧𝑧| 

 +〈𝐶𝐶+〉𝑛𝑛〈𝐶𝐶−〉𝑛𝑛 exp(−𝑖𝑖𝜙𝜙𝑒𝑒) |+𝑧𝑧⟩⟨−𝑧𝑧| + 〈𝐶𝐶−〉𝑛𝑛〈𝐶𝐶+〉𝑛𝑛 exp(+𝑖𝑖𝜙𝜙𝑒𝑒) |−𝑧𝑧⟩⟨+𝑧𝑧|. (74) 

Factorization yields 

 𝜌𝜌1 = [〈𝐶𝐶+〉𝑛𝑛|+𝑧𝑧⟩ + 〈𝐶𝐶−〉𝑛𝑛 exp(𝑖𝑖𝜙𝜙𝑒𝑒) |−𝑧𝑧⟩] [〈𝐶𝐶+〉𝑛𝑛⟨+𝑧𝑧| + 〈𝐶𝐶−〉𝑛𝑛 exp(−𝑖𝑖𝜙𝜙𝑒𝑒) ⟨−𝑧𝑧|]. (75) 
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For a pure state, invoking 𝜌𝜌1 = |�̂�𝜇𝑒𝑒⟩⟨�̂�𝜇𝑒𝑒| retrieves the following ket equation: 

 |�̂�𝜇𝑒𝑒⟩ = 〈𝐶𝐶+〉𝑛𝑛|+𝑧𝑧⟩ + 〈𝐶𝐶−〉𝑛𝑛 exp(𝑖𝑖𝜙𝜙𝑒𝑒) |−𝑧𝑧⟩. (76) 

If �̂�𝜇𝑛𝑛  follows the isotropic 𝑝𝑝𝑛𝑛0  (Eq. 15), the expected probabilities of collapse are 
computed from Eq. 74 as follows: 

 ⟨+𝑧𝑧|𝜌𝜌1|+𝑧𝑧⟩ = 〈𝐶𝐶+〉𝑛𝑛2 = ∫ 𝑝𝑝𝑛𝑛02𝜋𝜋 sin𝜃𝜃𝑛𝑛 𝑑𝑑𝜃𝜃𝑛𝑛
𝜋𝜋
𝜃𝜃𝑒𝑒

= cos2 𝜃𝜃𝑒𝑒
2

 (77) 

and 

 ⟨−𝑧𝑧|𝜌𝜌1|−𝑧𝑧⟩ = 〈𝐶𝐶−〉𝑛𝑛2 = ∫ 𝑝𝑝𝑛𝑛02𝜋𝜋 sin𝜃𝜃𝑛𝑛 𝑑𝑑𝜃𝜃𝑛𝑛
𝜃𝜃𝑒𝑒
0 = sin2 𝜃𝜃𝑒𝑒

2
. (78) 

The integration limits are based on the branching condition (Eq. 10). Because 𝑝𝑝𝑛𝑛0 is isotropic (i.e., 
spherical), the two probabilities are proportional to the solid angles formed by the down and up 
sides of the cone shaped by the initial Bloch vector 15 (�̂�𝜇𝑒𝑒) precessing over one cycle (Fig. S1). 
Each solid angle determines the probability of having the co-quantum on the corresponding side 
of the cone. In other words, the above two equations represent the probabilities of having the co-
quantum on the corresponding side of the cone. 

 
Fig. S1. Illustration of the cone of �̂�𝜇𝑒𝑒 formed by precession around the external main field, 𝐵𝐵0, 
over the first Larmor cycle (i.e., before collapse). 𝑒𝑒 : electron magnetic moment (principal 
quantum), �̂�𝜇𝑒𝑒. Any nuclear magnetic moment (co-quantum), �̂�𝜇𝑛𝑛, precessing around 𝐵𝐵0 within the 
cone causes �̂�𝜇𝑒𝑒 to collapse down, whereas �̂�𝜇𝑛𝑛 precessing outside the cone causes �̂�𝜇𝑒𝑒 to collapse up. 
For a given polar angle 𝜃𝜃𝑒𝑒 of �̂�𝜇𝑒𝑒, the probability for the atom from the oven to reach the down 
branch in the first-stage Stern–Gerlach experiment is proportional to the solid angle of the cone 
because �̂�𝜇𝑛𝑛 follows an isotropic angular distribution. However, in subsequent-stage Stern–Gerlach 
experiments, the relation is revised because �̂�𝜇𝑛𝑛 follows an anisotropic angular distribution, such as 
the heart shape (Fig. 3, Inset a, solid line; Eq. 24). 

Consequently, we reach the familiar quantum mechanical density operator, 

 𝜌𝜌1 = cos2 𝜃𝜃𝑒𝑒
2

|+𝑧𝑧⟩⟨+𝑧𝑧| + sin2 𝜃𝜃𝑒𝑒
2

|−𝑧𝑧⟩⟨−𝑧𝑧| 

 + cos 𝜃𝜃𝑒𝑒
2

sin 𝜃𝜃𝑒𝑒
2

exp(−𝑖𝑖𝜙𝜙𝑒𝑒) |+𝑧𝑧⟩⟨−𝑧𝑧| + sin 𝜃𝜃𝑒𝑒
2

cos 𝜃𝜃𝑒𝑒
2

exp(+𝑖𝑖𝜙𝜙𝑒𝑒) |−𝑧𝑧⟩⟨+𝑧𝑧|. (79) 

Factorization of the density operator yields 

 𝜌𝜌1 = �cos 𝜃𝜃𝑒𝑒
2

|+𝑧𝑧⟩ + sin 𝜃𝜃𝑒𝑒
2

exp(𝑖𝑖𝜙𝜙𝑒𝑒) |−𝑧𝑧⟩� �cos 𝜃𝜃𝑒𝑒
2
⟨+𝑧𝑧| + sin 𝜃𝜃𝑒𝑒

2
exp(−𝑖𝑖𝜙𝜙𝑒𝑒) ⟨−𝑧𝑧|�. (80) 

e

z, B0

y
x
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Invoking 𝜌𝜌1 = |�̂�𝜇𝑒𝑒⟩⟨�̂�𝜇𝑒𝑒|  for a pure state retrieves the following familiar quantum 
mechanical ket equation: 

 |�̂�𝜇𝑒𝑒⟩ = cos 𝜃𝜃𝑒𝑒
2

|+𝑧𝑧⟩ + sin 𝜃𝜃𝑒𝑒
2

exp(𝑖𝑖𝜙𝜙𝑒𝑒) |−𝑧𝑧⟩. (81) 

Therefore, CQD statistically reproduces the quantum mechanical wave function along with the 
probability amplitudes. As shown by Eq. 76, the moduli of probability amplitudes originate from 
averaging the binary coefficients in the CQD prediction expression. 

If �̂�𝜇𝑒𝑒 is also random, further ensemble averaging 𝜌𝜌1 over all realizations, denoted by 〈 〉𝑒𝑒, 
yields 

 𝜌𝜌2 = 〈𝜌𝜌1〉𝑒𝑒 = 〈cos2 𝜃𝜃𝑒𝑒
2
〉𝑒𝑒 |+𝑧𝑧⟩⟨+𝑧𝑧| + 〈sin2 𝜃𝜃𝑒𝑒

2
〉𝑒𝑒 |−𝑧𝑧⟩⟨−𝑧𝑧| 

 + 〈cos 𝜃𝜃𝑒𝑒
2

sin 𝜃𝜃𝑒𝑒
2

exp(−𝑖𝑖𝜙𝜙𝑒𝑒)〉𝑒𝑒 |+𝑧𝑧⟩⟨−𝑧𝑧| + 〈sin 𝜃𝜃𝑒𝑒
2

cos 𝜃𝜃𝑒𝑒
2

exp(+𝑖𝑖𝜙𝜙𝑒𝑒)〉𝑒𝑒 |−𝑧𝑧⟩⟨+𝑧𝑧|. (82) 

If �̂�𝜇𝑒𝑒  follows the isotropic 𝑝𝑝𝑒𝑒0  (Eq. 19), the probabilities of collapse are computed as 
follows: 

 ⟨+𝑧𝑧|𝜌𝜌2|+𝑧𝑧⟩ = 〈cos2 𝜃𝜃𝑒𝑒
2
〉𝑒𝑒 = ∫ �cos2 𝜃𝜃𝑒𝑒

2
� 𝑝𝑝𝑒𝑒02𝜋𝜋 sin 𝜃𝜃𝑒𝑒 𝑑𝑑𝜃𝜃𝑒𝑒

𝜋𝜋
0 = 1

2
 (83) 

and 

 ⟨−𝑧𝑧|𝜌𝜌2|−𝑧𝑧⟩ = 〈sin2 𝜃𝜃𝑒𝑒
2
〉𝑒𝑒 = ∫ �sin2 𝜃𝜃𝑒𝑒

2
� 𝑝𝑝𝑒𝑒02𝜋𝜋 sin𝜃𝜃𝑒𝑒 𝑑𝑑𝜃𝜃𝑒𝑒

𝜋𝜋
0 = 1

2
. (84) 

The cross terms vanish due to the azimuthal integration of exp(−𝑖𝑖𝜙𝜙𝑒𝑒) over a full cycle of �̂�𝜇𝑒𝑒: 

 ⟨+𝑧𝑧|𝜌𝜌2|−𝑧𝑧⟩ = 〈cos 𝜃𝜃𝑒𝑒
2

sin 𝜃𝜃𝑒𝑒
2

exp(−𝑖𝑖𝜙𝜙𝑒𝑒)〉𝑒𝑒 

 = ∫ cos 𝜃𝜃𝑒𝑒
2

sin 𝜃𝜃𝑒𝑒
2
�∫ exp(−𝑖𝑖𝜙𝜙𝑒𝑒)𝑝𝑝𝑒𝑒0𝑑𝑑𝜙𝜙𝑒𝑒

2𝜋𝜋
0 � sin 𝜃𝜃𝑒𝑒 𝑑𝑑𝜃𝜃𝑒𝑒

𝜋𝜋
0 = 0 (85) 

and 

 ⟨+𝑧𝑧|𝜌𝜌2|−𝑧𝑧⟩ = 〈sin 𝜃𝜃𝑒𝑒
2

cos 𝜃𝜃𝑒𝑒
2

exp(+𝑖𝑖𝜙𝜙𝑒𝑒)〉𝑒𝑒 

 = ∫ sin 𝜃𝜃𝑒𝑒
2

cos 𝜃𝜃𝑒𝑒
2
�∫ exp(+𝑖𝑖𝜙𝜙𝑒𝑒)𝑝𝑝𝑒𝑒0𝑑𝑑𝜙𝜙𝑒𝑒

2𝜋𝜋
0 � sin 𝜃𝜃𝑒𝑒 𝑑𝑑𝜃𝜃𝑒𝑒

𝜋𝜋
0 = 0. (86) 

Therefore, we reach 

 𝜌𝜌2 = 1
2

|+𝑧𝑧⟩⟨+𝑧𝑧| + 1
2

|−𝑧𝑧⟩⟨−𝑧𝑧|. (87) 

This familiar quantum mechanical density operator represents the mixed state and cannot be 
factorized into a product of two pure-state wave functions. 

If �̂�𝜇𝑛𝑛 follows the heart-shaped 𝑝𝑝𝑛𝑛1 (Eq. 24), the probabilities of collapse become 

 ⟨+𝑧𝑧|𝜌𝜌1|+𝑧𝑧⟩ = 〈𝐶𝐶+〉𝑛𝑛2 = ∫ 𝑝𝑝𝑛𝑛12𝜋𝜋 sin𝜃𝜃𝑛𝑛 𝑑𝑑𝜃𝜃𝑛𝑛
𝜋𝜋
𝜃𝜃𝑒𝑒

= 1 − sin4 𝜃𝜃𝑒𝑒
2

 (88) 

instead of Eq. 77 and 
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 ⟨−𝑧𝑧|𝜌𝜌1|−𝑧𝑧⟩ = 〈𝐶𝐶−〉𝑛𝑛2 = ∫ 𝑝𝑝𝑛𝑛12𝜋𝜋 sin𝜃𝜃𝑛𝑛 𝑑𝑑𝜃𝜃𝑛𝑛
𝜃𝜃𝑒𝑒
0 = sin4 𝜃𝜃𝑒𝑒

2
 (89) 

instead of Eq. 78. Because 𝑝𝑝𝑛𝑛1  is anisotropic (i.e., heart-shaped), the two probabilities are no 
longer simply proportional to the solid angles. However, the above two equations still represent 
the probabilities of having the co-quantum on the corresponding side of the cone (Fig. S1). 

Accordingly, the wave function becomes 

 |�̂�𝜇𝑒𝑒⟩ = �1 − sin4 𝜃𝜃𝑒𝑒
2

|+𝑧𝑧⟩ + sin2 𝜃𝜃𝑒𝑒
2

exp(𝑖𝑖𝜙𝜙𝑒𝑒) |−𝑧𝑧⟩ (90) 

instead of Eq. 81.  
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Appendix 4. Derivation of Majorana formula 
The Majorana formula [10] or its Landau–Zener variant [12-14] was derived most intuitively in 
2005 by Wittig [56]. Recent rederivations of the Majorana formula can be found in Wilczek [57] 
and Kofman [58]. Majorana stated that both the classical and the quantum-mechanical treatments 
require integration of the same differential equations [10, 11]. For completeness here, we follow 
Majorana’s variable transformations and then abridge Wittig’s solution but with a slightly altered 
contour integration.  

For the inner rotation chamber (Fig. 3, IR), the B field along the 𝑦𝑦 axis is approximated 
using a magnetic quadrupole (Fig. S2) [10, 11]: 

 
Fig. S2. Illustration of the magnetic field versus the 𝑦𝑦 location of the atom in the inner rotation 
chamber (i.e., the middle stage). 𝑦𝑦 denotes the axis of the atomic beam. Here, 𝐵𝐵𝑦𝑦 > 0, and 𝐺𝐺 =
𝜕𝜕𝐵𝐵𝑧𝑧 𝜕𝜕𝑦𝑦⁄ > 0 . For a given current, 𝐵𝐵𝑦𝑦  is invariant with 𝑦𝑦  while 𝐵𝐵𝑧𝑧  is proportional to 𝑦𝑦  (i.e., 
negative for 𝑦𝑦 < 0, zero at 𝑦𝑦 = 0, and positive for 𝑦𝑦 > 0). At 𝑦𝑦 = ±𝑧𝑧𝑎𝑎, we have 𝐵𝐵𝑧𝑧 = ±𝐵𝐵𝑦𝑦 or 
|𝐵𝐵𝑧𝑧| = 𝐵𝐵𝑦𝑦. 

 𝐵𝐵𝑥𝑥 = 0, (91) 

 𝐵𝐵𝑦𝑦 = 𝐺𝐺𝑧𝑧𝑎𝑎, (92) 

and 

 𝐵𝐵𝑧𝑧 = 𝐺𝐺𝑣𝑣𝑡𝑡. (93) 

Here, 𝐺𝐺 is the derivative of 𝐵𝐵𝑧𝑧 with respect to 𝑦𝑦 (i.e., the gradient magnitude of 𝐵𝐵𝑧𝑧, 𝜕𝜕𝐵𝐵𝑧𝑧 𝜕𝜕𝑦𝑦⁄ ), 𝑧𝑧𝑎𝑎 
(1.05 × 10−4 m) is the vertical distance of the atomic beam from the center of the wire, 𝑣𝑣 (800 m 
s–1) is the most likely speed of atoms, and 𝑡𝑡 is time set to zero at the null point of 𝐵𝐵𝑧𝑧. 𝐺𝐺 is given by 

 𝐺𝐺 = 𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝑦𝑦

= 2𝜋𝜋
𝜇𝜇0𝐼𝐼

𝐵𝐵𝑟𝑟2. (94) 
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Here, 𝐼𝐼 denotes the current carried by the wire along the −𝑥𝑥 axis, and 𝐵𝐵𝑟𝑟 (0.42 × 10−4 T) denotes 
the uniformly distributed remnant (residual) fringe magnetic flux density, which is parallel with 
the +𝑧𝑧 axis. The magnetic field generated by the wire cancels the remnant field at the null point 
(NP) to produce an approximate quadrupole (Fig. 3, Inset b). For a given current, 𝐵𝐵𝑦𝑦 is constant 
while 𝐵𝐵𝑧𝑧 varies linearly with distance from the point where 𝐵𝐵𝑧𝑧 = 0. 

Majorana neglected the nuclear magnetic moment and induction. The Bloch equation leads 
to 

 �̇�𝜃𝑒𝑒 = −𝛾𝛾𝑒𝑒𝐵𝐵𝑦𝑦 cos𝜙𝜙𝑒𝑒 (95) 

and 

 �̇�𝜙𝑒𝑒 = −𝛾𝛾𝑒𝑒�𝐵𝐵𝑧𝑧 − cot𝜃𝜃𝑒𝑒 𝐵𝐵𝑦𝑦 sin𝜙𝜙𝑒𝑒�, (96) 

which agree with Eq. 5 and 7 for 𝐵𝐵𝑛𝑛 = 0 and 𝑘𝑘𝑖𝑖 = 0. 

Majorana transformed the polar and azimuthal angles into probability amplitudes then 
solved the transformed equations [10, 11]. We let 

 |�̂�𝜇⟩ = �
𝑐𝑐1
𝑐𝑐2�. (97) 

The Schrödinger equation becomes 

 𝑖𝑖ℏ 𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑐𝑐1
𝑐𝑐2� = 𝐻𝐻 �

𝑐𝑐1
𝑐𝑐2�. (98) 

The Hamiltonian is 

 𝐻𝐻 = −1
2
ℏ𝛾𝛾𝑒𝑒𝐵𝐵�⃗ ⋅ �⃗�𝜎. (99) 

Substituting the Pauli matrices �⃗�𝜎 yields 

 𝐻𝐻 = −1
2
ℏ𝛾𝛾𝑒𝑒 �𝐵𝐵𝑥𝑥 �

0 1
1 0� + 𝐵𝐵𝑦𝑦 �

0 −𝑖𝑖
𝑖𝑖 0 � + 𝐵𝐵𝑧𝑧 �

1 0
0 −1��. (100) 

Merging terms gives 

 𝐻𝐻 = −1
2
ℏ𝛾𝛾𝑒𝑒 �

𝐵𝐵𝑧𝑧 𝐵𝐵𝑥𝑥 − 𝑖𝑖𝐵𝐵𝑦𝑦
𝐵𝐵𝑥𝑥 + 𝑖𝑖𝐵𝐵𝑦𝑦 −𝐵𝐵𝑧𝑧

�. (101) 

Majorana defined the following dimensionless variables for time and adiabaticity, 
respectively [10, 11]: 

 𝜏𝜏 = 1
2
�|𝛾𝛾𝑒𝑒𝐺𝐺𝑣𝑣| ⋅ 𝑡𝑡 (102) 

and 

 𝑘𝑘𝑚𝑚 =
|𝛾𝛾𝑒𝑒|𝐵𝐵𝑦𝑦
𝐺𝐺𝑣𝑣 𝐵𝐵𝑦𝑦⁄ =

|𝛾𝛾𝑒𝑒|𝐵𝐵𝑦𝑦2

𝐺𝐺𝑣𝑣
= 𝑧𝑧𝑎𝑎

𝑣𝑣
|𝛾𝛾𝑒𝑒|𝐵𝐵𝑦𝑦. (103) 

The numerator, |𝛾𝛾𝑒𝑒|𝐵𝐵𝑦𝑦, in the first fraction above represents the Larmor frequency about the 𝑦𝑦 axis, 
whereas the denominator, 𝐺𝐺𝑣𝑣 𝐵𝐵𝑦𝑦⁄ , represents approximately the rotation frequency of the field. 
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Accordingly, the Schrödinger equation is simplified to 

 𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑐𝑐1
𝑐𝑐2� = −𝑖𝑖 �

2𝜏𝜏𝑐𝑐1 − 𝑖𝑖�𝑘𝑘𝑚𝑚𝑐𝑐2
𝑖𝑖�𝑘𝑘𝑚𝑚𝑐𝑐1 − 2𝜏𝜏𝑐𝑐2

�. (104) 

Majorana defined the following transformation of variables [10, 11], which is analogous 
to heterodyne detection with a chirped local oscillator to remove high-frequency signals: 

 �
𝑐𝑐1
𝑐𝑐2� = �exp(−𝑖𝑖𝜏𝜏2)𝑓𝑓

exp(+𝑖𝑖𝜏𝜏2)𝑔𝑔
�. (105) 

The Schrödinger equation becomes 

 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑓𝑓𝑔𝑔� = �𝑘𝑘𝑚𝑚 �

− exp(+2𝑖𝑖𝜏𝜏2)𝑔𝑔
+ exp(−2𝑖𝑖𝜏𝜏2)𝑓𝑓

�. (106) 

Eliminating variables yields 

 � 𝑑𝑑
2

𝑑𝑑𝑑𝑑2
∓ 4𝑖𝑖𝜏𝜏 𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝑘𝑘𝑚𝑚� �

𝑓𝑓
𝑔𝑔� = 0. (107) 

For |𝑓𝑓(−∞)| = 1, we solve for |𝑓𝑓(+∞)|. Following Wittig [56], we rewrite the equation 
for 𝑓𝑓 as 

 4𝑖𝑖 𝑑𝑑𝑑𝑑
𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑
�𝑑𝑑

2𝑑𝑑
𝑑𝑑𝑑𝑑2

1
𝑑𝑑

+ 𝑘𝑘𝑚𝑚�. (108) 

Integrating over the entire flight yields 

 4𝑖𝑖 ∫ 𝑑𝑑𝑑𝑑
𝑑𝑑

+∞
−∞ = ∫ 𝑑𝑑𝑑𝑑

𝑑𝑑
�𝑑𝑑

2𝑑𝑑
𝑑𝑑𝑑𝑑2

1
𝑑𝑑

+ 𝑘𝑘𝑚𝑚�
+∞
−∞ . (109) 

We select a positively oriented and indented contour that excludes the singularity at 𝜏𝜏 = 0 
in the complex plane (Fig. S3), whereas the opposite orientation would yield an unphysical 
outcome. Consequently, we have 

 4𝑖𝑖 ln 𝑑𝑑(+∞)
𝑑𝑑(−∞) = ∮ − lim

𝜀𝜀→0
∫arc − lim

𝑅𝑅→∞
∫ 𝑑𝑑𝑑𝑑

𝑑𝑑
�𝑑𝑑

2𝑑𝑑
𝑑𝑑𝑑𝑑2

1
𝑑𝑑

+ 𝑘𝑘𝑚𝑚�Arc . (110) 

Here, 𝜀𝜀  is the radius of the small indenting semicircular arc, 𝑅𝑅  is the radius of the large 
semicircular arc, and 𝜏𝜏 is now made complex without substitution to a new complex variable 
(because the typically adopted 𝑧𝑧 is used already for space). Because no pole is inside the contour, 
the first integral on the right side vanishes. 

At 𝜏𝜏 = 0, Eq. 107 gives the residue, 

 Res0 = �𝑑𝑑
2𝑑𝑑
𝑑𝑑𝑑𝑑2

1
𝑑𝑑

+ 𝑘𝑘𝑚𝑚��
𝑑𝑑=0

 = 0. (111) 

Thus, the second integral along the small arc on the right side of Eq. 110 vanishes too.  

As 𝜏𝜏 → ∞, 𝑑𝑑
2𝑑𝑑
𝑑𝑑𝑑𝑑2

1
𝑑𝑑
→ 0 [56]; substitution into the third integral along the large arc yields 
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 4𝑖𝑖 ln 𝑑𝑑(+∞)
𝑑𝑑(−∞) = −𝑘𝑘𝑚𝑚 lim

𝑅𝑅→∞
∫ 𝑑𝑑𝑑𝑑

𝑑𝑑Arc . (112) 

Letting 𝜏𝜏 = 𝑅𝑅 exp(𝑖𝑖𝑖𝑖) leads to 

 ln 𝑑𝑑(+∞)
𝑑𝑑(−∞) = −𝑘𝑘𝑚𝑚

4𝑖𝑖
lim
𝑅𝑅→∞

∫ 𝑅𝑅 exp(𝑖𝑖𝑖𝑖)𝑖𝑖𝑑𝑑𝑖𝑖
𝑅𝑅 exp(𝑖𝑖𝑖𝑖)

𝜋𝜋
0 = −𝜋𝜋𝑘𝑘𝑚𝑚

4
. (113) 

Therefore, 

 |𝑑𝑑(+∞)|
|𝑑𝑑(−∞)| = exp �−𝜋𝜋𝑘𝑘𝑚𝑚

4
�. (114) 

Substituting |𝑓𝑓(−∞)| = 1, we reach 

 |𝑓𝑓(+∞)| = exp �−𝜋𝜋𝑘𝑘𝑚𝑚
4
�. (115) 

 
Fig. S3. Contour on the complex plane of 𝜏𝜏 for the integration. The solid circle indicates the pole 
at 𝜏𝜏 = 0. Adapted from Wittig [56]. 

Majorana [10, 11] reasoned that because 𝐵𝐵𝑧𝑧 reverses its orientation along the flight path, 
the probability of spin flip, 𝑊𝑊𝑚𝑚 , is given by |𝑓𝑓(+∞)|2  instead of |𝑔𝑔(+∞)|2 . The further 
justification that we found is the initial adiabatic flip induced when the atom passes above the wire 
[47]. Therefore, we obtain 

 𝑊𝑊𝑚𝑚 = exp �−𝜋𝜋𝑘𝑘𝑚𝑚
2
�. (116) 

Here, 𝑘𝑘𝑚𝑚 > 0. If 𝑘𝑘𝑚𝑚 < 0, one may extend the solution to exp �−𝜋𝜋|𝑘𝑘𝑚𝑚|
2
�. Substitution of Eq. 103 

results in 

 𝑊𝑊𝑚𝑚 = exp �−𝜋𝜋𝑧𝑧𝑎𝑎
2𝑣𝑣

|𝛾𝛾𝑒𝑒|𝐵𝐵𝑦𝑦�. (117)  
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Appendix 5. Derivation of CQD formula 
We derive the CQD formula for the probability of spin flip in the inner rotation chamber (Fig. 3, 
IR) in the presence of both the quadrupole field and the nuclear magnetic moment.  

The average polar angle of 𝐵𝐵�⃗ 𝑛𝑛, 〈𝜃𝜃𝑛𝑛〉, is derived from the heart shape given by Eq. 24: 

 〈𝜃𝜃𝑛𝑛〉 = ∫ 𝜃𝜃𝑛𝑛𝑝𝑝𝑛𝑛12𝜋𝜋 sin 𝜃𝜃𝑛𝑛 𝑑𝑑𝜃𝜃𝑛𝑛
𝜋𝜋
0 = 5π 8⁄ . (118) 

To reach an approximate analytical solution, we hold 𝜃𝜃𝑛𝑛  at 〈𝜃𝜃𝑛𝑛〉  as a representative value 
throughout the inner rotation chamber. 

The presence of 𝐵𝐵�⃗ 𝑛𝑛 alters both the remnant field due to the projection of 𝐵𝐵�⃗ 𝑛𝑛 to the 𝑧𝑧 axis, 
given by 𝐵𝐵𝑛𝑛 cos〈𝜃𝜃𝑛𝑛〉, and the transverse field due to the transverse projection of 𝐵𝐵�⃗ 𝑛𝑛, represented 
by 𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉 exp(𝑖𝑖𝜙𝜙𝑛𝑛) . To extend the Majorana solution presented in Appendix 4, we first 
substitute the remnant field as follows: 

 𝐵𝐵𝑟𝑟 → 𝐵𝐵𝑟𝑟′ = 𝐵𝐵𝑟𝑟 + 𝐵𝐵𝑛𝑛 cos〈𝜃𝜃𝑛𝑛〉. (119) 

Accordingly, we update the field gradient: 

 𝐺𝐺 = 2𝜋𝜋
𝜇𝜇0𝐼𝐼

𝐵𝐵𝑟𝑟2 → 𝐺𝐺′ = 2𝜋𝜋
𝜇𝜇0𝐼𝐼

𝐵𝐵𝑟𝑟′
2. (120) 

The quadrupole field along the 𝑦𝑦 axis is still given by the same equations but with the corrected 
field gradient:[10, 11] 

 𝐵𝐵𝑥𝑥′ = 0, (121) 

 𝐵𝐵𝑦𝑦′ = 𝐺𝐺′𝑧𝑧𝑎𝑎, (122) 

and 

 𝐵𝐵𝑧𝑧′ = 𝐺𝐺′𝑣𝑣𝑡𝑡. (123) 

Following Majorana [10, 11], we define the dimensionless time as 

 𝜏𝜏 = 1
2
�|𝛾𝛾𝑒𝑒𝐺𝐺′𝑣𝑣| ⋅ 𝑡𝑡 (124) 

and the dimensionless adiabaticity parameter due to 𝐵𝐵𝑦𝑦′  as 

 𝑘𝑘0 =
|𝛾𝛾𝑒𝑒|𝐵𝐵𝑦𝑦′

𝐺𝐺′𝑣𝑣 𝐵𝐵𝑦𝑦′�
= 𝑧𝑧𝑎𝑎

𝑣𝑣
|𝛾𝛾𝑒𝑒|𝐵𝐵𝑦𝑦′ . (125) 

The numerator, |𝛾𝛾𝑒𝑒|𝐵𝐵𝑦𝑦′ , in the first fraction above represents the Larmor frequency about the 𝑦𝑦 axis, 
whereas the denominator, 𝐺𝐺′𝑣𝑣 𝐵𝐵𝑦𝑦′⁄ , represents approximately the rotation frequency of the field. 
We similarly define the adiabaticity parameter due to the transverse field 𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉 as 

 𝑘𝑘1 = |𝛾𝛾𝑒𝑒|(𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉)
𝐺𝐺′𝑣𝑣 (𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉)⁄ = 𝑧𝑧𝑎𝑎

𝑣𝑣
|𝛾𝛾𝑒𝑒| (𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉)2

𝐵𝐵𝑦𝑦′
. (126) 

We also compute the dimensionless counterpart of the Larmor frequency 𝜔𝜔𝑛𝑛 as 

 𝑤𝑤𝑛𝑛 = 𝑑𝑑𝜙𝜙𝑛𝑛
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝜙𝜙𝑛𝑛
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2
�|𝛾𝛾𝑒𝑒𝐺𝐺′𝑣𝑣|

𝜔𝜔𝑛𝑛, (127) 
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where 𝜔𝜔𝑛𝑛 = 𝑑𝑑𝜙𝜙𝑛𝑛 𝑑𝑑𝑡𝑡⁄  was invoked. 

Then, we substitute the total transverse field for the Schrödinger equation: 

 𝐵𝐵𝑥𝑥 → 𝐵𝐵𝑥𝑥′ + 𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉 cos𝜙𝜙𝑛𝑛 (128) 

and 

 𝐵𝐵𝑦𝑦 → 𝐵𝐵𝑦𝑦′ + 𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉 sin𝜙𝜙𝑛𝑛. (129) 

Following the procedure presented in Appendix 4, we revise the Schrödinger equation to 

 𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑐𝑐1
𝑐𝑐2� = −𝑖𝑖 �

2𝜏𝜏 �𝑘𝑘1 exp(−𝑖𝑖𝜙𝜙𝑛𝑛) − 𝑖𝑖�𝑘𝑘0
�𝑘𝑘1 exp(𝑖𝑖𝜙𝜙𝑛𝑛) + 𝑖𝑖�𝑘𝑘0 −2𝜏𝜏

� �
𝑐𝑐1
𝑐𝑐2�. (130) 

Defining 

 �
𝑐𝑐1
𝑐𝑐2� = �exp(−𝑖𝑖𝜏𝜏2)𝑓𝑓(𝜏𝜏)

exp(+𝑖𝑖𝜏𝜏2)𝑔𝑔(𝜏𝜏)�, (131) 

we reach 

 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑓𝑓

(𝜏𝜏)
𝑔𝑔(𝜏𝜏)� = �

�−𝑖𝑖�𝑘𝑘1 exp(−𝑖𝑖𝜙𝜙𝑛𝑛) −�𝑘𝑘0� exp(+2𝑖𝑖𝜏𝜏2)𝑔𝑔(𝜏𝜏)

�−𝑖𝑖�𝑘𝑘1 exp 𝑖𝑖𝜙𝜙𝑛𝑛 + �𝑘𝑘0� exp(−2𝑖𝑖𝜏𝜏2)𝑓𝑓(𝜏𝜏)
�. (132) 

Eliminating 𝑔𝑔 yields 

 4𝑖𝑖 𝑑𝑑𝑑𝑑
𝑑𝑑

= 𝑑𝑑𝑑𝑑

𝑑𝑑− �𝑘𝑘1𝑤𝑤𝑛𝑛
4��𝑘𝑘1−𝑖𝑖�𝑘𝑘0 exp(𝑖𝑖𝜙𝜙𝑛𝑛)�

�𝑑𝑑
2𝑑𝑑
𝑑𝑑𝑑𝑑2

1
𝑑𝑑

+ �𝑘𝑘0 + 𝑘𝑘1 + 2�𝑘𝑘0𝑘𝑘1 sin(𝜙𝜙𝑛𝑛)��. (133) 

 In the limiting case that 𝑘𝑘0 ≫ 𝑘𝑘1, i.e., the extremely low-current region, we set 𝑘𝑘1 = 0, 
reducing Eq. 133 to 

 4𝑖𝑖 𝑑𝑑𝑑𝑑
𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑
�𝑑𝑑

2𝑑𝑑
𝑑𝑑𝑑𝑑2

1
𝑑𝑑

+ 𝑘𝑘0�, (134) 

which is the same as Eq. 108. The solution with |𝑓𝑓(−∞)| = 1 is given by Eq. 115: 

 |𝑓𝑓(+∞)| = exp �−𝜋𝜋𝑘𝑘0
4
�. (135) 

From Eq. 25 in Results, the fraction of flip is given by |𝑓𝑓(+∞)|4 instead of |𝑓𝑓(+∞)|2 due to the 
heart-shaped 𝑝𝑝𝑛𝑛1: 

 𝑊𝑊2 = exp(−𝜋𝜋𝑘𝑘0) = exp �−𝜋𝜋 𝑧𝑧𝑎𝑎
𝑣𝑣

|𝛾𝛾𝑒𝑒|𝐵𝐵𝑦𝑦′ �. (136) 

𝑊𝑊2 is shown in Fig. S4 below and Fig. 4. Because the pole in Eq. 134 is at 𝜏𝜏 = 0, we call this 
effect null-point rotation. 

 Conversely, if we set 𝑘𝑘0 = 0, Eq. 133 reduces to 

 4𝑖𝑖 𝑑𝑑𝑑𝑑
𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑−𝑤𝑤𝑛𝑛4

�𝑑𝑑
2𝑑𝑑
𝑑𝑑𝑑𝑑2

1
𝑑𝑑

+ 𝑘𝑘1�, (137) 
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which resembles Eq. 108, however, with the pole shifted from 0 to 𝑤𝑤𝑛𝑛 4⁄ . The solution is likewise 
obtained as 

 |𝑓𝑓(+∞)| = exp �−𝜋𝜋𝑘𝑘1
4
�. (138) 

Similarly, the fraction of flip is  

 𝑊𝑊𝑅𝑅 = exp(−𝜋𝜋𝑘𝑘1), (139) 

which is shown in Fig. S4. The pole 𝜏𝜏 = 𝑤𝑤𝑛𝑛 4⁄  is converted using Eq. 124 and Eq. 127 to 
dimensional quantities as 𝜔𝜔𝑒𝑒𝑧𝑧(𝑡𝑡) = 𝜔𝜔𝑛𝑛(𝑡𝑡), where 𝜔𝜔𝑒𝑒𝑧𝑧 denotes the Larmor frequency of �⃗�𝜇𝑒𝑒 about 
the 𝑧𝑧 axis and 𝜔𝜔𝑛𝑛 denotes the Larmor frequency of �⃗�𝜇𝑛𝑛. Therefore, the flip is due to precession 
resonance between the magnetic moments of the nucleus and the electron, which we refer to as 
nuclear-resonant rotation. 

 
Fig. S4. Fraction of spin flip versus wire current. As the current increases from 0.01 A to 0.5 A, 
𝑘𝑘0  decreases inversely proportionally with the current from 1.701 to 0.034, and 𝑘𝑘1  increases 
proportionally with the current from 0.038 to 1.891. When 𝐵𝐵𝑦𝑦′ = 𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉 = 0.11 × 10−4 T, 
𝑘𝑘0 = 𝑘𝑘1 ; the corresponding current equals 0.067 A, about which the dashed and dash-dotted 
curves are mirror symmetric on the semilog plot. Experiment: Frisch–Segrè experiment.  

 There are three terms inside the square brackets in Eq. 133: 𝑘𝑘0 + 𝑘𝑘1 + 2�𝑘𝑘0𝑘𝑘1 sin(𝜙𝜙𝑛𝑛). A 
direct combination of the first two terms yields the solid-line curve in Fig. S4, which predicts the 
fraction of flip accurately at the two ends but only qualitatively in the intermediate region. Below, 
we combine the terms more quantitatively. For an ensemble of atoms, the nuclear magnetic 
moment of each atom is given a random initial phase, 𝜙𝜙𝑛𝑛0, at 𝑡𝑡 = 0. 
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Given Eq. 25 in Results, we extend the Majorana solution (see Appendix 4) to 

 𝑊𝑊cqd = sin4 �𝛼𝛼𝑟𝑟
2
� = exp(−𝐸𝐸𝑟𝑟0 − 𝐸𝐸𝑟𝑟1 − 𝐸𝐸𝑖𝑖), (140) 

where 𝛼𝛼𝑟𝑟 represents the polar rotation by the inner rotation chamber from the initial 𝜃𝜃𝑒𝑒 = 0 and 
𝐸𝐸𝑟𝑟0 , 𝐸𝐸𝑟𝑟1 , 𝐸𝐸𝑖𝑖  represent contributions from null-point rotation, nuclear-resonant rotation, and 
induction, respectively. The fourth power is due to the heart-shaped 𝑝𝑝𝑛𝑛1. 

The null-point rotation exponent is determined by the quadrature-summed (or the root-
mean-squared) 𝐵𝐵 field on the 𝑥𝑥𝑦𝑦 plane: 

 𝐸𝐸𝑟𝑟0 = 𝜋𝜋𝑧𝑧𝑎𝑎
𝑣𝑣

|𝛾𝛾𝑒𝑒|�𝐵𝐵𝑦𝑦′2 + (𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉)2. (141) 

The quadrature sum can be derived through 〈�𝑖𝑖𝐵𝐵𝑦𝑦′ + 𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉 exp(𝑖𝑖𝜙𝜙𝑛𝑛0)�
2〉1 2⁄ , where the 

ensemble average is over a uniform distribution of 𝜙𝜙𝑛𝑛0 and 𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉 exp(𝑖𝑖𝜙𝜙𝑛𝑛0) is the transverse 
component of 𝐵𝐵�⃗ 𝑛𝑛  at the null point. One may consider 𝜋𝜋𝐵𝐵𝑦𝑦′ 𝐺𝐺′⁄ , yielding 𝜋𝜋𝑧𝑧𝑎𝑎  (Eq. 122), as the 
effective flight path-length for the null-point rotation, 𝜋𝜋𝑦𝑦𝑟𝑟0  (Fig. S5). Here, 𝜋𝜋𝑦𝑦𝑟𝑟0 = 𝜋𝜋𝑧𝑧𝑎𝑎 =
𝜋𝜋 × 0.105 × 10−3 = 0.33 × 10−3 m, which is a constant independent of the wire current. If 𝐵𝐵𝑛𝑛 =
0, the quadrature sum reduces to 𝐵𝐵𝑦𝑦′  as expected. 𝐸𝐸𝑟𝑟0 is responsible for Curve 3 in Fig. 4, which 
predicts the experimental observation in the low-current region accurately. Further description can 
be found above Eq. 28. 

 
Fig. S5. Illustration of the magnetic field versus the 𝑦𝑦 location of the atom in the inner rotation 
chamber (i.e., the middle stage). Here, 𝑦𝑦𝑟𝑟1 𝑦𝑦𝑟𝑟0⁄ = 3, for the current of 0.2 A. For a given current, 
𝐵𝐵𝑦𝑦′  is invariant with 𝑦𝑦 while 𝐵𝐵𝑧𝑧′ is proportional to 𝑦𝑦 (i.e., negative for 𝑦𝑦 < 0, zero at 𝑦𝑦 = 0, and 
positive for 𝑦𝑦 > 0). 𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉 is the transverse projection of 𝐵𝐵�⃗ 𝑛𝑛 on the 𝑥𝑥𝑦𝑦 plane. 𝐺𝐺′ = 𝜕𝜕𝐵𝐵𝑧𝑧′ 𝜕𝜕𝑦𝑦⁄ . 
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At high currents where 𝐼𝐼 ≥ 0.067  A, 𝐵𝐵𝑦𝑦′  becomes less than 𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉 , and 𝑘𝑘1 ≥ 𝑘𝑘0 ; 
consequently, nuclear-resonant rotation due to the rotating transverse component of 𝐵𝐵�⃗ 𝑛𝑛 becomes 
substantial. The resonant-rotation exponent is approximated heuristically as 

 𝐸𝐸𝑟𝑟1 = 1
2
�𝜋𝜋𝑦𝑦𝑟𝑟1

𝑣𝑣
|𝛾𝛾𝑒𝑒|𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉 �

2
�𝜋𝜋𝑦𝑦𝑟𝑟1

𝑣𝑣
1
𝑇𝑇𝑛𝑛
�. (142) 

The term in the square bracket is analogous to the right-hand side of Eq. 141. This estimation is 
inspired by the following approximation for small fluctuations of a random variable 𝑋𝑋: 

 ⟨exp(𝑋𝑋 − 𝑋𝑋�)⟩ ≈ exp �1
2
〈(𝑋𝑋 − 𝑋𝑋�)2〉� = exp �1

2
Var[𝑋𝑋] �, (143) 

where Var denotes variance. 

In analogy to 𝜋𝜋𝑦𝑦𝑟𝑟0 = 𝜋𝜋𝐵𝐵𝑦𝑦′ 𝐺𝐺′⁄  defined below Eq. 141, the effective flight path-length for 
nuclear-resonant rotation, 𝜋𝜋𝑦𝑦𝑟𝑟1, is defined as (Fig. S5) 

 𝜋𝜋𝑦𝑦𝑟𝑟1 = 𝜋𝜋𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉
𝐺𝐺′

= 𝜋𝜋𝑧𝑧𝑎𝑎𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉
𝐵𝐵𝑦𝑦′

. (144) 

Because 𝐵𝐵𝑒𝑒 is far greater than the field in the inner rotation chamber, the Larmor period of 
the nuclear magnetic moment is approximated to be 

 𝑇𝑇𝑛𝑛 = 2𝜋𝜋
𝛾𝛾𝑛𝑛𝐵𝐵𝑒𝑒

. (145) 

The curly bracket term in Eq. 142 represents the fraction of the Larmor period of the 
nuclear magnetic moment, denoted by 𝑓𝑓𝑟𝑟1, precessed during the flight time over 𝜋𝜋𝑦𝑦𝑟𝑟1: 

 𝑓𝑓𝑟𝑟1 = 𝜋𝜋𝑦𝑦𝑟𝑟1
𝑣𝑣𝑇𝑇𝑛𝑛

. (146) 

One may consider 𝜋𝜋𝑦𝑦𝑟𝑟1 𝑣𝑣⁄  as the effective nuclear-resonant time. Note that 𝑓𝑓𝑟𝑟1  increases 
proportionally with the wire current. When 𝑓𝑓𝑟𝑟1 approaches zero, the transverse component of 𝐵𝐵�⃗ 𝑛𝑛 
has no time to rotate or vary within the effective flight path-length for nuclear-resonant rotation; 
thus, its variance vanishes. Conversely, when 𝑓𝑓𝑟𝑟1  approaches unity, the mean transverse 
component of 𝐵𝐵�⃗ 𝑛𝑛  nears zero; thus, the variance peaks towards (𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉)2 . In between, the 
variance is approximated by linear interpolation.  

We have 𝜋𝜋𝑦𝑦𝑟𝑟1 (𝜋𝜋𝑦𝑦𝑟𝑟0)⁄ = 𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉 𝐵𝐵𝑦𝑦′⁄ . At the current of 0.067 A that divides the two 
regimes of current, 𝜋𝜋𝑦𝑦𝑟𝑟1 = 𝜋𝜋𝑦𝑦𝑟𝑟0 = 0.33 × 10−3 m, yielding 𝜋𝜋𝑦𝑦𝑟𝑟1 (𝜋𝜋𝑦𝑦𝑟𝑟0)⁄ = 1. As illustrated in 
Fig. S5, at the current of 0.2 A, 𝜋𝜋𝑦𝑦𝑟𝑟1 equals 0.98 × 10−3 m, yielding 𝜋𝜋𝑦𝑦𝑟𝑟1 (𝜋𝜋𝑦𝑦𝑟𝑟0)⁄ = 3.0. At the 
maximum current of 0.5 A, 𝜋𝜋𝑦𝑦𝑟𝑟1  increases to 2.5 × 10−3  m, yielding 𝜋𝜋𝑦𝑦𝑟𝑟1 (𝜋𝜋𝑦𝑦𝑟𝑟0)⁄ = 7.5; 𝑓𝑓𝑟𝑟1 
reaches 0.34. In comparison, the counterpart 𝑓𝑓𝑟𝑟0  during the flight time over 𝜋𝜋𝑦𝑦𝑟𝑟0  is only 
0.34 × 𝜋𝜋𝑦𝑦𝑟𝑟0 (𝜋𝜋𝑦𝑦𝑟𝑟1)⁄ = 0.045 ≪ 1; thus, the transverse field is stable, i.e., its angular variation is 
much less than 2𝜋𝜋. Therefore, the null-point rotation is due to the static and quasi-static transverse 
field within 𝜋𝜋𝑦𝑦𝑟𝑟0, whereas the nuclear-resonant rotation is due to the rotating transverse field 
within 𝜋𝜋𝑦𝑦𝑟𝑟1 . Disrupted by the null-point rotation in combination with the random 𝜙𝜙𝑛𝑛0  in the 
ensemble of atoms (see Eq. 133), the nuclear-resonant rotation contributes to the fraction of flip 
through the variance (instead of Eq. 139 in the absence of the null-point rotation). Note that one 
may consider the null-point rotation as a resonant effect but at a zero Larmor frequency. 
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Combining terms yields 

 𝐸𝐸𝑟𝑟1 = 𝜋𝜋2|𝛾𝛾𝑒𝑒|2𝛾𝛾𝑛𝑛𝑧𝑧𝑎𝑎3

4𝑣𝑣3
𝐵𝐵𝑒𝑒(𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉)5

𝐵𝐵𝑦𝑦′3
 . (147) 

Expressing 𝐵𝐵𝑦𝑦′  in terms of the current, 𝐼𝐼, using Eq. 120 and 122 gives 

 𝐸𝐸𝑟𝑟1 = 𝜇𝜇03|𝛾𝛾𝑒𝑒|2𝛾𝛾𝑛𝑛
32𝜋𝜋𝑣𝑣3

𝐵𝐵𝑒𝑒(𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉)5

(𝐵𝐵𝑟𝑟+𝐵𝐵𝑛𝑛 cos〈𝜃𝜃𝑛𝑛〉)6
𝐼𝐼3. (148) 

Using the dimensionless adiabaticity parameters 𝑘𝑘0  (Eq. 125) and 𝑘𝑘1  (Eq. 126), we 
simplify Eq. 141 and 142 to 

 𝐸𝐸𝑟𝑟0 = 𝜋𝜋𝑘𝑘0�1 + 𝑘𝑘1 𝑘𝑘0⁄ = 𝜋𝜋�𝑘𝑘02 + 𝑘𝑘0𝑘𝑘1 (149) 

and 

 𝐸𝐸𝑟𝑟1 = 1
2

[𝜋𝜋𝑘𝑘1 ]2{𝑓𝑓𝑟𝑟1}. (150) 

Thus, 𝐸𝐸𝑟𝑟0 is due to the quadrature sum of 𝑘𝑘0 and �𝑘𝑘0𝑘𝑘1, and 𝐸𝐸𝑟𝑟1 is due to 𝑘𝑘1. Eq. 146 can be 
rewritten as 𝑓𝑓𝑟𝑟1 = 𝜋𝜋𝑧𝑧𝑎𝑎

𝑣𝑣𝑇𝑇𝑛𝑛
�𝑘𝑘1 𝑘𝑘0⁄ . Substitution of the above two equations into Eq. 140 with 𝐸𝐸𝑖𝑖 = 0 

yields the fraction of flip 

 𝑊𝑊4 = exp �−𝜋𝜋�𝑘𝑘02 + 𝑘𝑘0𝑘𝑘1 −
1
2

[𝜋𝜋𝑘𝑘1 ]2𝑓𝑓𝑟𝑟1�, (151) 

which produces Curve 4 in Fig. 4. If 𝑓𝑓𝑟𝑟1 = 0, 𝑊𝑊4 reduces to 

 𝑊𝑊3 = exp �−𝜋𝜋�𝑘𝑘02 + 𝑘𝑘0𝑘𝑘1�, (152) 

which produces Curve 3 in Fig. 4. If 𝑘𝑘1 = 0, 𝑊𝑊3 reduces to 

 𝑊𝑊2 = exp(−𝜋𝜋𝑘𝑘0), (153) 

which produces Curve 2 in Fig. 4. If 𝑘𝑘0  is computed without including the correction to the 
remnant field (Eq. 119), 𝑘𝑘0 reduces to 𝑘𝑘𝑚𝑚; thus, 𝑊𝑊2 reduces to 

 𝑊𝑊1 = exp(−𝜋𝜋𝑘𝑘𝑚𝑚), (154) 

which produces Curve 1 in Fig. 4. Taking the square root of 𝑊𝑊1 leads to 

 𝑊𝑊𝑚𝑚 = exp(−𝜋𝜋𝑘𝑘𝑚𝑚 2⁄ ), (155) 

which produces Curve m in Fig. 4. 

The induction exponent is estimated as 

 𝐸𝐸𝑖𝑖 = 4𝑘𝑘𝑖𝑖 ∫ ��̇�𝜙𝑒𝑒� 𝑑𝑑𝑡𝑡
+𝑇𝑇𝑓𝑓 2⁄
−𝑇𝑇𝑓𝑓 2⁄ , (156) 

where 𝑇𝑇𝑑𝑑 denotes the entire flight time corresponding to a path-length of 16.3 mm in the inner 
rotation chamber. The field generated from the wire contributes to induction. At the nearest point 
to the wire along the atomic path, the magnetic flux density is 
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 𝐵𝐵𝑤𝑤(0) = 𝜇𝜇0𝐼𝐼
2𝜋𝜋𝑧𝑧𝑎𝑎

, (157) 

which reaches 9.5 × 10−4 T at the maximum current of 0.5 A and 𝑧𝑧𝑎𝑎 of 1.05 × 10−4 m. Therefore, 
the strongest 𝐵𝐵𝑤𝑤(0)  is 80 times (= 9.5 × 10−4 0.119⁄ × 10−4 ) greater than 𝐵𝐵𝑛𝑛 , 23 times (=
9.5 × 10−4 0.42⁄ × 10−4) stronger than 𝐵𝐵𝑟𝑟 , but 59 times (= 558 × 10−4 9.5⁄ × 10−4) weaker 
than 𝐵𝐵𝑒𝑒. Also, 𝐵𝐵𝑤𝑤(0) is ~300 times weaker than a typical main field [5, 37] (≥ 0.3 T) in Stern–
Gerlach experiments (see Paragraph 2 in Discussion). Without including the induction exponent, 
CQD predicts the Frisch–Segrè experimental observation well already (Fig. 1 or Fig. 4). 
Consequently, the induction effect in the inner rotation chamber is initially neglected. However, it 
is included here for completeness and for the estimation of 𝑘𝑘𝑖𝑖. Below, zero time 𝑡𝑡 is set to when 
an atom reaches the nearest point to the wire. 

From Eq. 156, we estimate 𝐸𝐸𝑖𝑖 by using the 𝑧𝑧 component of the field along the path: 

 𝐸𝐸𝑖𝑖 = 4𝑘𝑘𝑖𝑖|𝛾𝛾𝑒𝑒|∫ �𝐵𝐵𝑤𝑤(0)𝑣𝑣𝑑𝑑 𝑧𝑧𝑎𝑎⁄
1+(𝑣𝑣𝑑𝑑 𝑧𝑧𝑎𝑎⁄ )2�  𝑑𝑑𝑡𝑡+𝑇𝑇𝑓𝑓 2⁄

−𝑇𝑇𝑓𝑓 2⁄ = 4𝑘𝑘𝑖𝑖|𝛾𝛾𝑒𝑒|𝐵𝐵𝑤𝑤(0) 𝑧𝑧𝑎𝑎
𝑣𝑣

ln �𝑇𝑇𝑓𝑓𝑣𝑣
2𝑧𝑧𝑎𝑎
�. (158) 

Substituting Eq. 157 gives 

 𝐸𝐸𝑖𝑖 = 𝑘𝑘𝑖𝑖
2𝜇𝜇0|𝛾𝛾𝑒𝑒|
𝜋𝜋𝑣𝑣

ln �𝑇𝑇𝑓𝑓𝑣𝑣
2𝑧𝑧𝑎𝑎
� 𝐼𝐼. (159) 

Expressing in terms of the current, 𝐼𝐼, yields 

 𝑊𝑊cqd = exp�−�(𝑐𝑐𝑟𝑟0 𝐼𝐼⁄ )2 + 𝑐𝑐𝑟𝑟𝑟𝑟2 − 𝑐𝑐𝑟𝑟1𝐼𝐼3 − 𝑐𝑐𝑟𝑟𝑖𝑖𝐼𝐼�, (160) 

where 

 𝑐𝑐𝑟𝑟0 = 2𝜋𝜋2|𝛾𝛾𝑒𝑒|(𝐵𝐵𝑟𝑟 + 𝐵𝐵𝑛𝑛 cos〈𝜃𝜃𝑛𝑛〉)2𝑧𝑧𝑎𝑎2 (𝜇𝜇0𝑣𝑣)⁄ , (161) 

 𝑐𝑐𝑟𝑟𝑟𝑟 = 𝜋𝜋|𝛾𝛾𝑒𝑒|𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉 𝑧𝑧𝑎𝑎 𝑣𝑣⁄ , (162) 

 𝑐𝑐𝑟𝑟1 = 𝜇𝜇03|𝛾𝛾𝑒𝑒|2𝛾𝛾𝑛𝑛
32𝜋𝜋𝑣𝑣3

𝐵𝐵𝑒𝑒(𝐵𝐵𝑛𝑛 sin〈𝜃𝜃𝑛𝑛〉)5 (𝐵𝐵𝑟𝑟 + 𝐵𝐵𝑛𝑛 cos〈𝜃𝜃𝑛𝑛〉)6� , (163) 

and  

 𝑐𝑐𝑟𝑟𝑖𝑖 = 𝑘𝑘𝑖𝑖
2𝜇𝜇0|𝛾𝛾𝑒𝑒|
𝜋𝜋𝑣𝑣

ln �𝑇𝑇𝑓𝑓𝑣𝑣
2𝑧𝑧𝑎𝑎
�. (164) 

The four coefficients represent null-point rotation, rotation saturation, nuclear-resonant rotation, 
and induction rotation of the polar angle, respectively. While null-point rotation increases 𝑊𝑊cqd 
with increasing current, nuclear-resonant rotation does the opposite. 

If 𝑘𝑘𝑖𝑖 = 0, Eq. 160 reduces to 

 𝑊𝑊4 = exp�−�(𝑐𝑐𝑟𝑟0 𝐼𝐼⁄ )2 + 𝑐𝑐𝑟𝑟𝑟𝑟2 − 𝑐𝑐𝑟𝑟1𝐼𝐼3�, (165) 

which is equivalent to Eq. 151. Further, if 𝑐𝑐𝑟𝑟1 = 0, we reach 

 𝑊𝑊3 = exp�−�(𝑐𝑐𝑟𝑟0 𝐼𝐼⁄ )2 + 𝑐𝑐𝑟𝑟𝑟𝑟2 �, (166) 

which is another form of Eq. 152. Merging the above two equations, we obtain 
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 𝑊𝑊4 = 𝑊𝑊3 exp(−𝑐𝑐𝑟𝑟1𝐼𝐼3). (167) 

Finally, if 𝑐𝑐𝑟𝑟𝑟𝑟 = 0, we obtain 

 𝑊𝑊2 = exp(−𝑐𝑐𝑟𝑟0 𝐼𝐼⁄ ), (168) 

which is the same as Eq. 153.  
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Appendix 6. Uncertainty relation 
If the initial co-quanta are isotropically distributed, CQD reproduces the quantum mechanical 
uncertainty relation.  

First, we predict the expectation of the spin-angular-momentum projection, 〈𝑠𝑠𝑦𝑦〉, along 𝑦𝑦, 
the direction of the atomic beam. The CQD prediction expression for the 𝑦𝑦 axis is (Eq. 13) 

 |�̂�𝜇𝑒𝑒©�̂�𝜇𝑛𝑛⟩𝑦𝑦 = 𝐶𝐶+𝑦𝑦(�̂�𝜇𝑒𝑒, �̂�𝜇𝑛𝑛)|+𝑦𝑦⟩ + 𝐶𝐶−𝑦𝑦(�̂�𝜇𝑒𝑒, �̂�𝜇𝑛𝑛) exp�𝑖𝑖𝜙𝜙𝑒𝑒𝑦𝑦� |−𝑦𝑦⟩, (169) 

where 𝜙𝜙𝑒𝑒𝑦𝑦  denotes the azimuthal angle of �⃗�𝜇𝑒𝑒  about 𝑦𝑦. Following Appendix 3 yields the wave 
function, 

 |�̂�𝜇𝑒𝑒⟩𝑦𝑦 = cos 𝜃𝜃𝑒𝑒𝑦𝑦
2

|+𝑦𝑦⟩ + sin 𝜃𝜃𝑒𝑒𝑦𝑦
2

exp�𝑖𝑖𝜙𝜙𝑒𝑒𝑦𝑦� |−𝑦𝑦⟩, (170) 

where 𝜃𝜃𝑒𝑒𝑦𝑦  denotes the polar angle of �⃗�𝜇𝑒𝑒  relative to 𝑦𝑦 . Note that |+𝑦𝑦⟩  here denotes “up” for 
magnetic moment and hence “down” for electron spin, and |−𝑦𝑦⟩ denotes the opposite state.  

The expectation is 

 〈𝑠𝑠𝑦𝑦〉 = −ℏ
2

cos2 𝜃𝜃𝑒𝑒𝑦𝑦
2

+ ℏ
2

sin2 𝜃𝜃𝑒𝑒𝑦𝑦
2

= −ℏ
2

cos𝜃𝜃𝑒𝑒𝑦𝑦. (171) 

Second, we measure along 𝑧𝑧. The CQD prediction expression for the 𝑧𝑧 axis is (Eq. 13) 

 |�̂�𝜇𝑒𝑒©�̂�𝜇𝑛𝑛⟩𝑧𝑧 = 𝐶𝐶+𝑧𝑧(�̂�𝜇𝑒𝑒, �̂�𝜇𝑛𝑛)|+𝑧𝑧⟩ + 𝐶𝐶−𝑧𝑧(�̂�𝜇𝑒𝑒, �̂�𝜇𝑛𝑛) exp(𝑖𝑖𝜙𝜙𝑒𝑒𝑧𝑧) |−𝑧𝑧⟩. (172) 

We similarly derive the wave function (Appendix 3), 

 |�̂�𝜇𝑒𝑒⟩𝑧𝑧 = cos 𝜃𝜃𝑒𝑒𝑧𝑧
2

|+𝑧𝑧⟩ + sin 𝜃𝜃𝑒𝑒𝑧𝑧
2

exp(𝑖𝑖𝜙𝜙𝑒𝑒𝑧𝑧) |−𝑧𝑧⟩, (173) 

where 𝜃𝜃𝑒𝑒𝑧𝑧 and 𝜙𝜙𝑒𝑒𝑧𝑧 denote the polar and azimuthal angles in relation to 𝑧𝑧.  

We compute the standard deviation, Δ𝑠𝑠𝑧𝑧, as follows: 

 〈𝑠𝑠𝑧𝑧〉 = −ℏ
2

cos2 𝜃𝜃𝑒𝑒𝑧𝑧
2

+ ℏ
2

sin2 𝜃𝜃𝑒𝑒𝑧𝑧
2

= −ℏ
2

cos 𝜃𝜃𝑒𝑒𝑧𝑧, (174) 

 〈𝑠𝑠𝑧𝑧2〉 = �− ℏ
2
�
2

cos2 𝜃𝜃𝑒𝑒𝑧𝑧
2

+ �ℏ
2
�
2

sin2 𝜃𝜃𝑒𝑒𝑧𝑧
2

= �ℏ
2
�
2
, (175) 

and 

 Δ𝑠𝑠𝑧𝑧 = �〈𝑠𝑠𝑧𝑧2〉 − 〈𝑠𝑠𝑧𝑧〉2 = ℏ
2

sin𝜃𝜃𝑒𝑒𝑧𝑧. (176) 

At this point, �̂�𝜇𝑒𝑒 has collapsed to ±𝑧𝑧; thus, the polar angle relative to 𝑥𝑥, 𝜃𝜃𝑒𝑒𝑥𝑥 = 𝜋𝜋 2⁄ . Now, the co-
quantum distribution follows the heart shape (Eq. 24).  

Third, we measure along 𝑥𝑥. The CQD prediction expression for the 𝑥𝑥 axis is (Eq. 13) 

 |�̂�𝜇𝑒𝑒©�̂�𝜇𝑛𝑛⟩𝑥𝑥 = 𝐶𝐶+𝑥𝑥(�̂�𝜇𝑒𝑒 , �̂�𝜇𝑛𝑛)|+𝑥𝑥⟩ + 𝐶𝐶−𝑥𝑥(�̂�𝜇𝑒𝑒, �̂�𝜇𝑛𝑛) exp(𝑖𝑖𝜙𝜙𝑒𝑒𝑥𝑥) |−𝑥𝑥⟩. (177) 

Invoking 𝜃𝜃𝑒𝑒𝑥𝑥 = 𝜋𝜋 2⁄ , the heart shape (Eq. 24), and the identity cos𝜃𝜃𝑛𝑛𝑧𝑧 = sin 𝜃𝜃𝑛𝑛𝑥𝑥 sin𝜙𝜙𝑛𝑛𝑥𝑥 , we 
follow Appendix 3 to similarly obtain for the ±𝑧𝑧 branch 
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 〈𝐶𝐶+𝑥𝑥〉𝑛𝑛2 = ∫ ∫ 1∓cos𝜃𝜃𝑛𝑛𝑧𝑧
4𝜋𝜋

sin𝜃𝜃𝑛𝑛𝑥𝑥 𝑑𝑑𝜙𝜙𝑛𝑛𝑥𝑥𝑑𝑑𝜃𝜃𝑛𝑛𝑥𝑥
2𝜋𝜋
0

𝜋𝜋
𝜋𝜋 2⁄ = 1

2
 (178) 

and 

 〈𝐶𝐶−𝑥𝑥〉𝑛𝑛2 = ∫ ∫ 1∓cos𝜃𝜃𝑛𝑛𝑧𝑧
4𝜋𝜋

sin𝜃𝜃𝑛𝑛𝑥𝑥 𝑑𝑑𝜙𝜙𝑛𝑛𝑥𝑥𝑑𝑑𝜃𝜃𝑛𝑛𝑥𝑥
2𝜋𝜋
0

𝜋𝜋 2⁄
0 = 1

2
. (179) 

The even split between the two ±𝑥𝑥 branches is because the heart shape associated with either of 
the ±𝑧𝑧 branches is rotationally symmetric about the 𝑧𝑧 axis. Thus, the wave function is 

 |�̂�𝜇𝑒𝑒⟩𝑥𝑥 = 1
√2

|+𝑥𝑥⟩ + 1
√2

exp(𝑖𝑖𝜙𝜙𝑒𝑒𝑥𝑥) |−𝑥𝑥⟩. (180) 

We derive the standard deviation, Δ𝑠𝑠𝑥𝑥, as follows: 

 〈𝑠𝑠𝑥𝑥〉 = −ℏ
2
� 1
√2
�
2

+ ℏ
2
� 1
√2
�
2

= 0, (181) 

 〈𝑠𝑠𝑥𝑥2〉 = �− ℏ
2
�
2
� 1
√2
�
2

+ �ℏ
2
�
2
� 1
√2
�
2

= �ℏ
2
�
2
, (182) 

and 

 Δ𝑠𝑠𝑥𝑥 = �〈𝑠𝑠𝑥𝑥2〉 − 〈𝑠𝑠𝑥𝑥〉2 = ℏ
2
 . (183) 

Fourth, combining Eq. 176 and 183 reaches 

 Δ𝑠𝑠𝑧𝑧Δ𝑠𝑠𝑥𝑥 = �ℏ
2

sin 𝜃𝜃𝑒𝑒𝑧𝑧� ⋅
ℏ
2
. (184) 

Substituting the identity, cos 𝜃𝜃𝑒𝑒𝑦𝑦 = sin𝜃𝜃𝑒𝑒𝑧𝑧 sin𝜙𝜙𝑒𝑒𝑧𝑧, into Eq. 171 yields 

 ℏ
2
�〈𝑠𝑠𝑦𝑦〉� = ��ℏ

2
sin𝜃𝜃𝑒𝑒𝑧𝑧� ⋅

ℏ
2
� ⋅ |sin𝜙𝜙𝑒𝑒𝑧𝑧|. (185) 

Combining the above two equations yields 

 Δ𝑠𝑠𝑧𝑧Δ𝑠𝑠𝑥𝑥 ⋅ |sin𝜙𝜙𝑒𝑒𝑧𝑧| = ℏ
2
�〈𝑠𝑠𝑦𝑦〉�. (186) 

This uncertainty equality shows that the magnitude of the uncertainty product, Δ𝑠𝑠𝑧𝑧Δ𝑠𝑠𝑥𝑥, depends 
on not only 〈𝑠𝑠𝑦𝑦〉 but also the initial phase, 𝜙𝜙𝑒𝑒𝑧𝑧, in relation to the first measurement axis. Therefore, 
the order of the 𝑧𝑧-𝑥𝑥 measurements matters.  

Finally, invoking |sin𝜙𝜙𝑒𝑒𝑧𝑧| ≤ 1 reproduces exactly the familiar quantum mechanical 
uncertainty inequality for angular momenta, 

 Δ𝑠𝑠𝑧𝑧Δ𝑠𝑠𝑥𝑥 ≥
ℏ
2
�〈𝑠𝑠𝑦𝑦〉�, (187) 

which takes on the equal sign when 𝜙𝜙𝑒𝑒𝑧𝑧 = ±𝜋𝜋 2⁄ .   
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Appendix 7. Entanglement 
CQD in its current form construes anticorrelated entanglement as a pair of atoms having both 
opposing �̂�𝜇𝑒𝑒’s and �̂�𝜇𝑛𝑛’s (Fig. S6). The two atoms are delivered from the entanglement site to two 
Stern–Gerlach devices. Once the orientation of the external magnetic flux density 𝐵𝐵�⃗ 0 is chosen, 
the two �̂�𝜇𝑒𝑒’s are guaranteed to collapse to opposing states according to the branching condition 
because 𝜃𝜃𝑒𝑒1 + 𝜃𝜃𝑒𝑒2 = 𝜋𝜋  and 𝜃𝜃𝑛𝑛1 + 𝜃𝜃𝑛𝑛2 = 𝜋𝜋 . For example, if atom 1 collapses to +𝐵𝐵�0  because 
𝜃𝜃𝑛𝑛1 > 𝜃𝜃𝑒𝑒1, atom 2 automatically collapses to −𝐵𝐵�0 because 𝜃𝜃𝑛𝑛2 < 𝜃𝜃𝑒𝑒2 (as derived from 𝜋𝜋 − 𝜃𝜃𝑛𝑛1 <
𝜋𝜋 − 𝜃𝜃𝑒𝑒1 ). Therefore, the co-quanta propagate with the principal quanta and determine the 
measurement outcomes.  

The CQD prediction expressions for the two atoms are 

 |�̂�𝜇𝑒𝑒©�̂�𝜇𝑛𝑛⟩1 = 𝐶𝐶+(�̂�𝜇𝑒𝑒 , �̂�𝜇𝑛𝑛)|+𝐵𝐵�0�1 + 𝐶𝐶−(�̂�𝜇𝑒𝑒 , �̂�𝜇𝑛𝑛) exp(𝑖𝑖𝜙𝜙𝑒𝑒1) |−𝐵𝐵�0�1 (188) 

and 

 |−�̂�𝜇𝑒𝑒©−�̂�𝜇𝑛𝑛⟩2 = 𝐶𝐶−(�̂�𝜇𝑒𝑒, �̂�𝜇𝑛𝑛)|+𝐵𝐵�0�2 + 𝐶𝐶+(�̂�𝜇𝑒𝑒 , �̂�𝜇𝑛𝑛) exp(𝑖𝑖𝜙𝜙𝑒𝑒2) |−𝐵𝐵�0�2. (189) 

The numeral subscripts denote the two atoms. The joint pre-collapse state function of the atom 
pair is written as |�̂�𝜇𝑒𝑒©�̂�𝜇𝑛𝑛⟩1 ⊗ |−�̂�𝜇𝑒𝑒© − �̂�𝜇𝑛𝑛⟩2, where ⊗ denotes tensor product [59]. Because 𝐶𝐶+ ⋅
𝐶𝐶− = 0 and 𝐶𝐶± ⋅ 𝐶𝐶± = 𝐶𝐶±, the joint CQD prediction expression of the atom pair is given by 

 |�̂�𝜇𝑒𝑒©�̂�𝜇𝑛𝑛⟩1 ⊗ |−�̂�𝜇𝑒𝑒©−�̂�𝜇𝑛𝑛⟩2 

 = 𝐶𝐶+|+𝐵𝐵�0�1 ⊗ |−𝐵𝐵�0�2 + 𝐶𝐶− exp(𝑖𝑖Δ𝜙𝜙) |−𝐵𝐵�0�1 ⊗ |+𝐵𝐵�0�2, (190) 

where Δ𝜙𝜙 = 𝜙𝜙𝑒𝑒1 − 𝜙𝜙𝑒𝑒2 and the common phase is removed.  

 
Fig. S6. Entanglement of the electron magnetic moments of two atoms. (a) At entanglement site. 
(b) – (d) At two Stern–Gerlach devices with three orientations of 𝐵𝐵�⃗ 0. e, electron magnetic moment; 
n, nuclear magnetic moment; subscripts 1 and 2, atoms 1 and 2. The short arrows indicate the 
directions of collapse determined by the branching condition, where the polar angles are relative 
to 𝐵𝐵�⃗ 0. In d, to facilitate comparison, one may mirror �̂�𝜇𝑒𝑒 about 𝐵𝐵�⃗ 0 because �̂�𝜇𝑒𝑒 precesses much faster 
than �̂�𝜇𝑛𝑛. 

If Δ𝜙𝜙 is constant for a given experimental configuration, ensemble averaging Eq. 190, 
denoted by 〈 〉𝑛𝑛,𝑒𝑒, yields the familiar quantum mechanical entangled wave function, 

 |𝜓𝜓⟩ = 〈𝐶𝐶+〉𝑛𝑛,𝑒𝑒|+𝐵𝐵�0�1 ⊗ |−𝐵𝐵�0�2 + 〈𝐶𝐶−〉𝑛𝑛,𝑒𝑒 exp(𝑖𝑖Δ𝜙𝜙) |−𝐵𝐵�0�1 ⊗ |+𝐵𝐵�0�2. (191) 
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If both �̂�𝜇𝑛𝑛 and �̂�𝜇𝑒𝑒 of individual atoms are isotropically distributed, Appendix 3 provides 〈𝐶𝐶±〉𝑛𝑛,𝑒𝑒 =

1 √2⁄ , yielding 

 |𝜓𝜓⟩ = 1
√2

|+𝐵𝐵�0�1 ⊗ |−𝐵𝐵�0�2 + 1
√2

exp(𝑖𝑖Δ𝜙𝜙) |−𝐵𝐵�0�1 ⊗ |+𝐵𝐵�0�2. (192) 

Here, the key to producing the above entangled wave function is the mutual exclusivity of 
the binary coefficients: 𝐶𝐶+ ⋅ 𝐶𝐶− = 0 . The pre-collapse “product state” in CQD, |�̂�𝜇𝑒𝑒©�̂�𝜇𝑛𝑛⟩1 ⊗ 
|−�̂�𝜇𝑒𝑒©− �̂�𝜇𝑛𝑛⟩2, averages to an entangled wave function (i.e., not a product state). One can adapt 
the above derivation for correlated instead of anticorrelated entanglement.  

A future direction is to explore CQD in relation to Bell's theorem [60]. An ideal experiment 
would follow the above derivation, where entangled pairs of alkali-metal atoms are delivered to 
two Stern–Gerlach devices with independent quantization axes. Shin et al. [61] published in 2019 
an experiment in this direction. However, the quantization axes could not be controlled 
independently, and Bose-Einstein condensate helium-4 atoms in the long-lived metastable state 
23S1  instead of alkali-metal atoms were used. The same group also published in 2022 an 
experiment on the Bell inequality for motional degrees of freedom of massive particles, thus far 
reaching a maximum CHSH-Bell parameter of 𝑆𝑆 =  1.1 [62]. 
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Appendix 8. Two-stage Stern–Gerlach  apparatus with a varying angle between the 
quantization axes 
CQD can potentially be further verified with a two-stage Stern–Gerlach apparatus with a varying 
angle between the quantization axes. As usual, the first stage polarizes the atoms to the +𝑧𝑧 state; 
however, the second stage is rotated by an arbitrary angle 𝛼𝛼 about the 𝑦𝑦 axis (the atomic beam 
axis). Below, the coordinates of the second stage are denoted with primes.  

Using the heart-shaped angular distribution of the co-quanta (Eq. 24) and invoking both 
𝜃𝜃𝑒𝑒𝑧𝑧′ = 𝛼𝛼 and 

 cos 𝜃𝜃𝑛𝑛𝑧𝑧 = 1
√2

(cos𝜃𝜃𝑛𝑛𝑧𝑧′ − sin𝜃𝜃𝑛𝑛𝑧𝑧′ cos𝜙𝜙𝑛𝑛𝑧𝑧′), (193) 

CQD predicts the probability of collapsing to the +𝑧𝑧′ state as 

 〈𝐶𝐶+𝑧𝑧′〉𝑛𝑛2 = ∫ ∫ 1−cos𝜃𝜃𝑛𝑛𝑧𝑧
4𝜋𝜋

sin𝜃𝜃𝑛𝑛𝑧𝑧′ 𝑑𝑑𝜙𝜙𝑛𝑛𝑧𝑧′𝑑𝑑𝜃𝜃𝑛𝑛𝑧𝑧′
2𝜋𝜋
0

𝜋𝜋
𝛼𝛼 = (1+cos𝛼𝛼)2 (2−cos𝛼𝛼)

4
. (194) 

In comparison, the standard literature [7, 30] predicts cos2(𝛼𝛼 2⁄ ) or (1 + cos𝛼𝛼) 2⁄  (Eq. 16). At 𝛼𝛼 
of 0, 𝜋𝜋 2⁄ , and 𝜋𝜋, the typical angles in the literature, CQD and the literature predict the same 
probabilities of 1, 1 2⁄ , and 0, respectively. In general, however, the ratio of the two predictions is 

 𝑅𝑅+ = [9 − (2 cos𝛼𝛼 − 1)2] 8⁄ , (195) 

which holds for 0 ≤ 𝛼𝛼 < 𝜋𝜋 with 𝜋𝜋 excluded to avoid 0 0⁄ . The ratio peaks at 𝛼𝛼 of 𝜋𝜋 3⁄  with 𝑅𝑅+ =
9 8⁄  then decreases with increasing 𝛼𝛼 . At 𝛼𝛼 = 11𝜋𝜋 12⁄ , for example, 𝑅𝑅+ = 0.05 , with CQD 
predicting a much lower probability. 
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